Skip to main content

Diagnostic, Prognostic and Theranostic Potential of miRNAs in Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Abstract

A novel class of gene regulators, small noncoding RNAs or microRNAs (miRNAs) has an important role in various malignancies, including prostate cancer (PCa). Contribution of dysregulated miRNAs in processes related to PCa malignant transformation and disease progression, especially androgen receptor signaling, proliferation, apoptosis, epithelial to mesenchymal transition and metastasis, is under extensive investigations. Thus, microRNAs emerge as potential noninvasive biomarkers that might have the potential in screening of PCa early stages, monitoring of patients at risk for metastases occurrence, as well as monitoring of therapeutic response and anticancer drug chemoresistance development. Being regarded as one of the PCa hallmarks, glutathione transferase P1 (GSTP1) expression seems as an important target both in PCa early detection and prognosis; therefore, miRNAs involved in regulation of GSTP1 expression probably play an important role in prostate carcinogenesis. Although certain limitations precede the development of novel biomarkers in PCa and replacement of the conventional ones, it is obvious that only by combining available diagnostic algorithms with novel multipanel tests and novel therapeutic possibilities, advances in personalized therapy and improvement of disease outcomes can be achieved in patients with prostate cancer. Application of miRNAs dominantly as possible predictive factors in chemoresistance development in PCa is highly anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA et al (2020) Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J 11:399–418

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 71:209–249

    Article  Google Scholar 

  3. Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E et al (2022) An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncs 6:43

    Article  Google Scholar 

  4. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S (2022) Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules 27:5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Lu B, He M, Wang Y, Wang Z, Du L (2022) Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health 10:811044

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71:618–629

    Article  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA A Cancer J Clin 73:17–48

    Article  Google Scholar 

  8. Frydenberg M, Stricker PD, Kaye KW (1997) Prostate cancer diagnosis and management. Lancet 349:1681–1687

    Article  CAS  PubMed  Google Scholar 

  9. Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P (2022) miRNAs in cancer (review of literature). IJMS 23:2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rana S, Valbuena GN, Curry E, Bevan CL, Keun HC (2022) MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 126:502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  13. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15:1–19

    Article  PubMed  Google Scholar 

  16. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M et al (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kargutkar N, Hariharan P, Nadkarni A (2023) Dynamic interplay of microRNA in diseases and therapeutic. Clin Genet 103:268–276

    Article  CAS  PubMed  Google Scholar 

  18. Forterre A, Komuro H, Aminova S, Harada M (2020) A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers. 12:1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  Google Scholar 

  20. Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH et al (2014) Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 19:1177–1189

    Article  CAS  PubMed  Google Scholar 

  21. Otmani K, Lewalle P (2021) Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol 11:708765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Wu W, Claret FX (2017) Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 12:187–197

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1:15004

    Article  Google Scholar 

  24. Frixa T, Donzelli S, Blandino G (2015) Oncogenic MicroRNAs: key players in malignant transformation. Cancers. 7:2466–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pavlíková L, Šereš M, Breier A, Sulová Z (2022) The roles of microRNAs in cancer multidrug resistance. Cancers 14:1090

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kopczyńska E (2015) Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. wo 6:423–427

    Article  Google Scholar 

  27. Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG (2021) Prostate cancer. Lancet 398:1075–1090

    Article  CAS  PubMed  Google Scholar 

  28. Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V et al (2017) Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541:359–364

    Article  CAS  PubMed  Google Scholar 

  29. Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y et al (2018) TMPRSS2-ERG controls luminal epithelial lineage and antiandrogen sensitivity in PTEN and TP53 -mutated prostate cancer. Clin Cancer Res 24:4551–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ et al (2018) Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174:758–769.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D et al (2019) ARv7 represses tumor-suppressor genes in castration-resistant prostate cancer. Cancer Cell 35:401–413.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Massillo C, Dalton GN, Farré PL, De Luca P, De Siervi A (2017) Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 154:R81–R97

    Article  CAS  PubMed  Google Scholar 

  33. Moustafa AA, Kim H, Albeltagy RS, El-Habit OH, Abdel-Mageed AB (2018) MicroRNAs in prostate cancer: from function to biomarker discovery. Exp Biol Med (Maywood) 243:817–825

    Article  CAS  PubMed  Google Scholar 

  34. Lo U-G, Yang D, Hsieh J-T (2013) The role of microRNAs in prostate cancer progression. Transl Androl Urol 2:228–241

    PubMed  PubMed Central  Google Scholar 

  35. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

  36. Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu Y-N et al (2023) MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 28:101613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arrighetti N, Beretta GL (2021) miRNAs as therapeutic tools and biomarkers for prostate cancer. Pharmaceutics 13:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakamoto S (2015) Editorial comment to functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 22:252–253

    Article  CAS  PubMed  Google Scholar 

  39. Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Jänne OA et al (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31:4460–4471

    Article  CAS  PubMed  Google Scholar 

  40. Katzendobler S, Do A, Weller J, Rejeski K, Dorostkar MM, Albert NL et al (2022) The value of stereotactic biopsy of primary and recurrent brain metastases in the era of precision medicine. Front Oncol 12:1014711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mishra S, Deng JJ, Gowda PS, Rao MK, Lin C-L, Chen CL et al (2014) Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 33:4097–4106

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Bemis L, Su L-J, Gao D, Flaig TW (2012) miR-125b regulation of androgen receptor Signaling via modulation of the receptor complex co-repressor NCOR2. BioRes Open Access 1:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bielska A, Skwarska A, Kretowski A, Niemira M (2022) The role of androgen receptor and microRNA interactions in androgen-dependent diseases. IJMS 23:1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Y, Jia D, Kim H, Abd Elmageed ZY, Datta A, Davis R et al (2016) Dysregulation of miR-212 promotes castration resistance through hnRNPH1-mediated regulation of AR and AR-V7: implications for racial disparity of prostate cancer. Clin Cancer Res 22:1744–1756

    Article  CAS  PubMed  Google Scholar 

  45. Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC (2011) miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 129:810–819

    Article  CAS  PubMed  Google Scholar 

  46. Kroiss A, Vincent S, Decaussin-Petrucci M, Meugnier E, Viallet J, Ruffion A et al (2015) Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene 34:2846–2855

    Article  CAS  PubMed  Google Scholar 

  47. Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh C-L et al (2012) The altered expression of MiR-221/−222 and MiR-23b/−27b is associated with the development of human castration resistant prostate cancer. Prostate 72:1093–1103

    Article  CAS  PubMed  Google Scholar 

  48. Sun C, Wang G, Wrighton KH, Lin H, Songyang Z, Feng X-H et al (2016) Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. Am J Cancer Res 6:2207–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zuo Z-H, Yu YP, Ding Y, Liu S, Martin A, Tseng G et al (2015) Oncogenic activity of miR-650 in prostate cancer is mediated by suppression of CSR1 expression. Am J Pathol 185:1991–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello-Grand M et al (2016) MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest 126:4585–4602

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  CAS  PubMed  Google Scholar 

  52. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30:4231–4242

    Article  CAS  PubMed  Google Scholar 

  53. Stuopelyte K, Daniunaite K, Bakavicius A, Lazutka JR, Jankevicius F, Jarmalaite S (2016) The utility of urine-circulating miRNAs for detection of prostate cancer. Br J Cancer 115:707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dybos SA, Flatberg A, Halgunset J, Viset T, Rolfseng T, Kvam S et al (2018) Increased levels of serum miR-148a-3p are associated with prostate cancer. APMIS 126:722–731

    Article  CAS  PubMed  Google Scholar 

  55. Walter BA, Valera VA, Pinto PA, Merino MJ (2013) Comprehensive microRNA profiling of prostate cancer. J Cancer 4:350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sengupta D, Deb M, Patra SK (2018) Antagonistic activities of miR-148a and DNMT1: ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene 660:68–79

    Article  CAS  PubMed  Google Scholar 

  57. Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A et al (2010) MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 285:19076–19084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang S, Zou C, Tang Y, Wa Q, Peng X, Chen X et al (2019) miR-582-3p and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β Signaling. Mol Ther Nucleic Acids 16:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bertoli G, Cava C, Castiglioni I (2016) MicroRNAs as biomarkers for diagnosis, prognosis and Theranostics in prostate cancer. Int J Mol Sci 17:421

    Article  PubMed  PubMed Central  Google Scholar 

  60. Matin F, Jeet V, Moya L, Selth LA, Chambers S, Australian Prostate Cancer BioResource et al (2018) A plasma biomarker panel of four MicroRNAs for the diagnosis of prostate cancer. Sci Rep 8:6653

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zidan HE, Abdul-Maksoud RS, Elsayed WSH, Desoky EAM (2018) Diagnostic and prognostic value of serum miR-15a and miR-16-1 expression among egyptian patients with prostate cancer. IUBMB Life 70:437–444

    Article  CAS  PubMed  Google Scholar 

  62. Dong JT, Boyd JC, Frierson HF (2001) Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49:166–171

    Article  CAS  PubMed  Google Scholar 

  63. Kelly BD, Miller N, Sweeney KJ, Durkan GC, Rogers E, Walsh K et al (2015) A circulating MicroRNA signature as a biomarker for prostate cancer in a high risk group. J Clin Med 4:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC et al (2012) Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 72:1469–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoey C, Ahmed M, Fotouhi Ghiam A, Vesprini D, Huang X, Commisso K et al (2019) Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. J Transl Med 17:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Urabe F, Matsuzaki J, Yamamoto Y, Kimura T, Hara T, Ichikawa M et al (2019) Large-scale circulating microRNA profiling for the liquid biopsy of prostate cancer. Clin Cancer Res 25:3016–3025

    Article  CAS  PubMed  Google Scholar 

  67. Sharova E, Grassi A, Marcer A, Ruggero K, Pinto F, Bassi P et al (2016) A circulating miRNA assay as a first-line test for prostate cancer screening. Br J Cancer 114:1362–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS (2018) microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol 40:1010428318775864

    Article  PubMed  Google Scholar 

  69. Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y et al (2018) Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol 50:2193–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Al-Kafaji G, Said H, Alam M, Al Naieb Z (2018) Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification. Oncol Lett 16:1357–1365. [cited 2023 Jul 25]; Available from: http://www.spandidos-publications.com/10.3892/ol.2018.8778

    PubMed  PubMed Central  Google Scholar 

  71. Nam RK, Amemiya Y, Benatar T, Wallis CJD, Stojcic-Bendavid J, Bacopulos S et al (2015) Identification and validation of a five MicroRNA signature predictive of prostate cancer recurrence and metastasis: a cohort study. J Cancer 6:1160–1171

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim T, Croce CM (2023) MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 55:1314–1321. [cited 2023 Jul 25]; Available from: https://www.nature.com/articles/s12276-023-01050-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Di Pietro G, Magno LAV, Rios-Santos F (2010) Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 6:153–170

    Article  PubMed  Google Scholar 

  74. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  75. Tew KD, Townsend DM (2012) Glutathione-s-transferases as determinants of cell survival and death. Antioxid Redox Signal 17:1728–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu B, Dong D (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 33:656–668

    Article  CAS  PubMed  Google Scholar 

  77. Guengerich FP (2005) Activation of alkyl halides by glutathione transferases. Meth Enzymol 401:342–353

    Article  CAS  Google Scholar 

  78. Kurtovic S, Grehn L, Karlsson A, Hellman U, Mannervik B (2008) Glutathione transferase activity with a novel substrate mimics the activation of the prodrug azathioprine. Anal Biochem 375:339–344

    Article  CAS  PubMed  Google Scholar 

  79. Pljesa-Ercegovac M, Savic-Radojevic A, Matic M, Coric V, Djukic T, Radic T et al (2018) Glutathione transferases: potential targets to overcome chemoresistance in solid Tumors. Int J Mol Sci 19:3785

    Article  PubMed  PubMed Central  Google Scholar 

  80. Singh S (2015) Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 75:1–15

    Article  CAS  PubMed  Google Scholar 

  81. Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 1830:3267–3288

    Article  CAS  Google Scholar 

  82. Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17:1373–1380

    Article  CAS  PubMed  Google Scholar 

  83. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25:1639–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahon KL, Qu W, Devaney J, Paul C, Castillo L, Wykes RJ et al (2014) Methylated glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer 111:1802–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martignano F, Gurioli G, Salvi S, Calistri D, Costantini M, Gunelli R et al (2016) GSTP1 methylation and protein expression in prostate cancer: diagnostic implications. Dis Markers 2016:1–6

    Article  Google Scholar 

  86. Wang X, Jia H, Yang H, Luo M, Sun T (2017) Overexpression of glutathione S-transferase P1 inhibits the viability and motility of prostate cancer via targeting MYC and inactivating the MEK/ERK1/2 pathways. Oncol Res. [cited 2023 Jul 25]; Available from: http://www.ingentaconnect.com/content/10.3727/096504017X14978850961299

  87. Bryzgunova OE, Morozkin ES, Yarmoschuk SV, Vlassov VV, Laktionov PP (2008) Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann N Y Acad Sci 1137:222–225

    Article  CAS  PubMed  Google Scholar 

  88. Singh S, Shukla GC, Gupta S (2015) MicroRNA regulating glutathione S-transferase P1 in prostate cancer. Curr Pharmacol Rep 1:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Santric V, Djokic M, Suvakov S, Pljesa-Ercegovac M, Nikitovic M, Radic T et al (2020) GSTP1 rs1138272 polymorphism affects prostate cancer risk. Medicina 56:128

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang L, Zhang J, Ye Z, Manevich Y, Townsend DM, Marshall DT et al (2019) S-glutathionylated serine proteinase inhibitors as biomarkers for radiation exposure in prostate cancer patients. Sci Rep 9:13792

    Article  PubMed  PubMed Central  Google Scholar 

  91. Menon D, Board PG (2013) A role for glutathione transferase omega 1 (GSTO1-1) in the Glutathionylation cycle. J Biol Chem 288:25769–25779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Board PG, Menon D (2016) Structure, function and disease relevance of omega-class glutathione transferases. Arch Toxicol 90:1049–1067

    Article  CAS  PubMed  Google Scholar 

  93. Karin M, Gallagher E (2005) From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57:283–295

    Article  CAS  PubMed  Google Scholar 

  94. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S et al (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–5800

    Article  CAS  PubMed  Google Scholar 

  96. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tew KD (2007) Redox in redux: emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochem Pharmacol 73:1257–1269

    Article  CAS  PubMed  Google Scholar 

  98. Sau A, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM (2010) Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys 500:116–122

    Article  CAS  PubMed  Google Scholar 

  99. O’Brien M, Kruh GD, Tew KD (2000) The influence of coordinate overexpression of glutathione phase II detoxification gene products on drug resistance. J Pharmacol Exp Ther 294:480–487

    PubMed  Google Scholar 

  100. Wu JH, Batist G (2013) Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta 1830:3350–3353

    Article  CAS  PubMed  Google Scholar 

  101. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu YC, Lee KH, Chang FR, Chuang DW, Yang JC Compound for inhibiting activity of glutathione S-transferase Omega 1 and preparation method thereof, and pharmaceutical compositions containing compound

    Google Scholar 

  103. Zong C, Wang J, Shi T-M (2014) MicroRNA 130b enhances drug resistance in human ovarian cancer cells. Tumour Biol 35:12151–12156

    Article  CAS  PubMed  Google Scholar 

  104. Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H et al (2017) MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep 7:41942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tao J, Wu D, Xu B, Qian W, Li P, Lu Q et al (2012) microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 27:1967–1975

    CAS  PubMed  Google Scholar 

  106. Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S et al (2013) Identification of novel AR-targeted MicroRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. Ling MT, editor. PLoS One 8:e56592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bi C, Zhang G, Bai Y, Zhao B, Yang H (2019) Increased expression of miR-153 predicts poor prognosis for patients with prostate cancer. Medicine 98:e16705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nohata N, Hanazawa T, Enokida H, Seki N (2012) microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget 3:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bevacqua E, Ammirato S, Cione E, Curcio R, Dolce V, Tucci P (2022) The potential of MicroRNAs as non-invasive prostate cancer biomarkers: a systematic literature review based on a machine learning approach. Cancers 14:5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nanomaterials for Drug Delivery and Therapy [Internet]. Elsevier; 2019 [cited 2023 Jul 25]. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20170044786

  111. Jeelani S, Jagat Reddy R, Maheswaran T, Asokan G, Dany A, Anand B (2014) Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 6:6

    Article  Google Scholar 

  112. Shastry BS (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J 6:16–21

    Article  CAS  PubMed  Google Scholar 

  113. O’Dwyer E, Bodei L, Morris MJ (2021) The role of Theranostics in prostate cancer. Semin Radiat Oncol 31:71–82

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sweeney CJ, Chen Y-H, Carducci M, Liu G, Jarrard DF, Eisenberger M et al (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY et al (2017) Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 377:352–360

    Article  CAS  PubMed  Google Scholar 

  117. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P et al (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368:138–148

    Article  CAS  PubMed  Google Scholar 

  118. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS et al (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  119. Scher HI, Fizazi K, Saad F, Taplin M-E, Sternberg CN, Miller K et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197

    Article  CAS  PubMed  Google Scholar 

  120. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  PubMed  Google Scholar 

  121. Abou DS, Ulmert D, Doucet M, Hobbs RF, Riddle RC, Thorek DLJ (2016) Whole-body and microenvironmental localization of Radium-223 in Naïve and mouse models of prostate cancer metastasis. JNCIJ 108:djv380

    Article  Google Scholar 

  122. Marcu L, Bezak E, Allen BJ (2018) Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit Rev Oncol Hematol 123:7–20

    Article  PubMed  Google Scholar 

  123. Allen BJ (2017) A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. Australas Phys Eng Sci Med 40:369–376

    Article  PubMed  Google Scholar 

  124. Rahbar K, Bögeman M, Yordanova A, Eveslage M, Schäfers M, Essler M et al (2018) Delayed response after repeated 177Lu-PSMA-617 radioligand therapy in patients with metastatic castration resistant prostate cancer. Eur J Nucl Med Mol Imaging 45:243–246

    Article  CAS  PubMed  Google Scholar 

  125. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T et al (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-Centre, single-arm, phase 2 study. Lancet Oncol 19:825–833

    Article  CAS  PubMed  Google Scholar 

  126. McDevitt MR, Thorek DLJ, Hashimoto T, Gondo T, Veach DR, Sharma SK et al (2018) Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat Commun 9:1629

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  128. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Subramanian S, Steer CJ (2019) Special issue: MicroRNA regulation in health and disease. Genes 10:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang W (2017) MicroRNAs: biomarkers, diagnostics, and therapeutics. In: Huang J, Borchert GM, Dou D, Huan J, Lan W, Tan M et al (eds) Bioinformatics in MicroRNA research. Springer, New York, NY, pp 57–67. Available from: http://link.springer.com/10.1007/978-1-4939-7046-9_4

    Chapter  Google Scholar 

  131. Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38:613–626

    Article  CAS  PubMed  Google Scholar 

  132. Fan R, Xiao C, Wan X, Cha W, Miao Y, Zhou Y et al (2019) Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol 16:707–718

    Article  PubMed  PubMed Central  Google Scholar 

  133. Suresh BM, Li W, Zhang P, Wang KW, Yildirim I, Parker CG et al (2020) A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc Natl Acad Sci U S A 117:33197–33203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alnuqaydan AM (2020) Targeting micro-RNAs by natural products: a novel future therapeutic strategy to combat cancer. Am J Transl Res 12:3531–3556

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jayaraj R, Raymond G, Krishnan S, Tzou KS, Baxi S, Ram MR et al (2020) Clinical theragnostic potential of diverse miRNA expressions in prostate cancer: a systematic review and meta-analysis. Cancers 12:1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350:207–213

    Article  CAS  PubMed  Google Scholar 

  137. Yu J, Lu Y, Cui D, Li E, Zhu Y, Zhao Y et al (2014) miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncol Rep 31:910–918

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Savic-Radojevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savic-Radojevic, A., Pljesa-Ercegovac, M. (2024). Diagnostic, Prognostic and Theranostic Potential of miRNAs in Prostate Cancer. In: Kocic, G., Hadzi-Djokic, J., Simic, T. (eds) Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-51712-9_7

Download citation

Publish with us

Policies and ethics