Skip to main content

Technology for Creating Systems for Monitoring and Predictive Modeling the State of Hazardous Phenomena and Objects (on the Example of the Covid-19 Epidemic)

  • Conference paper
  • First Online:
12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022) (WCIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 718))

Included in the following conference series:

  • 56 Accesses

Abstract

The paper considers the issues of creating systems for monitoring and predictive modeling the state of hazardous phenomena and objects, discusses various options for their use for risk analysis. Using the example of the Covid-19 pandemic, it is shown how the discrepancy between forecast and reality leads (after a critical analysis) to the model modification or a revision of the accepted external impact scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annual Report 9. Impact of non-pharmaceutical interventions (NPIS) to reduce COVID-19 mortality and healthcare (2020). https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf

  2. Asanov, A., Borisenkov, P., Larichev, O., Naryzhny, Y., Roizenson, G.: Method CYCLE for multicriteria classification and its application to credit risk analysis. Econ. Math. Methods 37(2), 14–21 (2001). (in Russian)

    Google Scholar 

  3. Brauer, F., Castillo-Chavez, C., Feng, Z.: Mathematical Models in Epidemiology. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9828-9

    Book  Google Scholar 

  4. Dmitriy, C., Gregory, R., Vladimir, B.: Multidimensional classifier of risk analysis methods. In: Aliev, R.A., Yusupbekov, N.R., Kacprzyk, J., Pedrycz, W., Sadikoglu, F.M. (eds.) WCIS 2020. AISC, vol. 1323, pp. 529–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68004-6_69

    Chapter  Google Scholar 

  5. Danielson, M., Ekenberg, L.: A framework for analysing decisions under risk. Eur. J. Oper. Res. 104(3), 474–484 (1998)

    Article  Google Scholar 

  6. Ebeling, W., Feistel, R.: Physics of Self-Organization and Evolution. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  7. Ekenberg, L., Mihai, A., Fasth, T., Komendantova, N., Danielson, M., Al-Salaymeh, A.: A multicriteria approach to modelling pandemic response under strong uncertainty: a case study in Jordan. Sustainability 14(1) (2022). https://www.mdpi.com/2071-1050/14/1/81

  8. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115(772), 700–721 (1927)

    Google Scholar 

  9. Larichev, O., Moshkovich, H.: Verbal Decision Analysis for Unstructured Problems. Kluwer Acedemic Publishers, Boston (1997)

    Book  Google Scholar 

  10. Leslie, P.H.: On the use of matrices in certain population mathematics. Biometrika 33(3), 183–212 (1945)

    Article  MathSciNet  Google Scholar 

  11. Murray, J.D.: Mathematical Biology: I. An Introduction, 3rd edn. Springer, Heidelberg (2002)

    Book  Google Scholar 

  12. Nakhushev, A.M.: The equations of mathematical biology. Higher School, Moscow (1995). (in Russian)

    Google Scholar 

  13. Popkov, Y., Dubnov, Y., Popkov, A.: Forecasting development of COVID-19 epidemic in European Union using entropy-randomized approach. Inform. Autom. 5(20), 1010–1033 (2021). (in Russian)

    Article  Google Scholar 

  14. Romanyukha, A.A.: Mathematical models in immunology and epidemiology of infectious diseases. Binom. Knowledge Lab, Moscow (2012), (in Russian)

    Google Scholar 

  15. Royzenson, G.V.: Synergistic effect in decision making, pp. 248–272, no. 36. URSS, Moscow (2012). (in Russian)

    Google Scholar 

  16. Sokolov, A.V., Voloshinov, V.V.: Model selection by balanced identification: the interplay of optimization and distributed computing. Open Comput. Sci. 10(1), 283–295 (2020)

    Article  Google Scholar 

  17. Stepanov, I., Komendantova, N.: Analyzing Russian media policy on promoting vaccination and other COVID-19 risk mitigation measures. Front. Public Health 10 (2022). https://www.frontiersin.org/articles/10.3389/fpubh.2022.839386

  18. Svirezhev, Y.M., Logofet, D.O.: Sustainability of Biological Communities. Nauka, Moscow (1978). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sokolov Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexander, S., Gregory, R., Nadejda, K., Love, E. (2024). Technology for Creating Systems for Monitoring and Predictive Modeling the State of Hazardous Phenomena and Objects (on the Example of the Covid-19 Epidemic). In: Aliev, R.A., et al. 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022). WCIS 2022. Lecture Notes in Networks and Systems, vol 718. Springer, Cham. https://doi.org/10.1007/978-3-031-51521-7_26

Download citation

Publish with us

Policies and ethics