Skip to main content

Study on the Detection of Vertigo Induced by GVS Based on EEG Signal Feature Binary Classification

  • Conference paper
  • First Online:
12th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2023)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 104))

Included in the following conference series:

  • 119 Accesses

Abstract

Objective: Galvanic Vestibular Stimulation (GVS) is a common method to induce reversible vertigo for the purpose of scientific or clinic study. Through the study of GVS induced vertigo, we can explore the working mechanism of vestibular nervous system. For the detection of GVS induced vertigo, we generally adopt the way of questionnaire survey of subjective feelings, which lacks objectivity. Therefore, this paper will classify GVS induced vertigo by EEG classification method to help determine GVS induced vertigo status. Methods: subjects were required to complete the Dizziness Handicap Inventory (DHI). The results were used as the data label for supervised Machine learning classification of EEG. We collected EEG signals before and after GVS stimulation. Then different sample features in EEG signals were extracted by short-time Fourier Transform, Sample Entropy (SampEn), Wavelet Transform and Ensemble Empirical Mode Decomposition (EEMD). Various machine learning classification models such as linear, nonlinear and neural network were used to classify and judge the state of vertigo. Results: The results showed that EEG classification on machine learning can realize the vertigo state detection. By comparing the classification results of various classification models under various data features, it is found that the AdaBoost nonlinear algorithm classification based on SampEn of EEG achieves the highest accuracy in the classification of whether there are vertigo, with an accuracy of 90.7% and an ROC curve area of 0.970. Conclusion: This paper obtained an ideal feature and classifier based on the feature classification of EEG signals in the detection of vertigo induced by GVS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsubasa, M., Maiko, S., Atsushi, K., et al.: Greater functional activation during galvanic vestibular stimulation is associated with improved postural stability: a GVS-fMRI study. Somatosens Mot. Res. 37(4), 257–261 (2020)

    Google Scholar 

  2. Fitzpatrick, R.C., Wardman, D.L., Taylor, J.L.: Effects of galvanic vestibular stimulation during human walking. J. Physiol. Lond. 517(3), 931–939 (1999)

    Article  Google Scholar 

  3. Fitzpatrick, R.C., Marsden, J., Lord, S.R., et al.: Galvanic vestibular stimulation evokes sensations of body rotation. NeuroReport 13(18), 2379–2383 (2002)

    Article  Google Scholar 

  4. Volkening, K., Bergmann, J., Keller, I., et al.: Verticality perception during and after galvanic vestibular stimulation. Neurosci. Lett.. Lett. 581(3), 75–79 (2014)

    Article  Google Scholar 

  5. Jacobson, G.P., Newman, C.W.: The development of the dizziness handicap inventory. Arch. Otolaryngol.Otolaryngol. 116(4), 424–427 (1990)

    Article  Google Scholar 

  6. Eggers, S.D.Z., et al.: Classification of vestibular signs and examination techniques: Nystagmus and nystagmus-like movements. J. Vestib. Res.Vestib. Res. 29(2–3), 57–87 (2019)

    Article  Google Scholar 

  7. Liang, F., Liu, J.P., Li, Y.: Application of nystagmus view in differential diagnosis of BPPV and VM. Chinese Foreign Med. Res. 19(27), 64–67 (2021)

    Google Scholar 

  8. Lin, J.: Recording the nystagmus threshold of temperature test in normal subjects by electronystagmography. J. Otolaryngol-Head N 4, 39 (1988)

    Google Scholar 

  9. Kim, D.K., Sunwoo, J.S., Lee, S.K., et al.: Incidence and localizing value of vertigo and dizziness in patients with epilepsy: Video-EEG monitoring study. Epilepsy Res. 126, 102–103 (2016)

    Article  Google Scholar 

  10. Lea, P., Juana, S., Klein, K., et al.: Quantified eeg in patients with vertigo of central or peripheral origin. Int. J. Neurosci.Neurosci. 93(1), 35–44 (2009)

    Google Scholar 

  11. Feng, N., Hu, F., Wang, H., Gouda, M.A.: Decoding of voluntary and involuntary upper limb motor imagery based on graph Fourier transform and cross frequency coupling coefficients. J. Neural Eng. 17(5), 056043 (2020)

    Article  Google Scholar 

  12. Annaby, M.H., Said, M.H., Eldeib, A.M., Rushdi, M.A.: EEG-based motor imagery classification using digraph Fourier transforms and extreme learning machines. Biomed. Signal Process. 69 (2021)

    Google Scholar 

  13. Nguyen, Q.D.N., Liu, A., Lin, C.: Development of a neurodegenerative disease gait classification algorithm using multiscale sample entropy and machine learning classifiers. Entropy 22, 1340 (2020)

    Article  Google Scholar 

  14. Wang, C.: A sample entropy inspired affinity propagation method for bearing fault signal classification. Digit. Signal Process 102, 102740 (2020)

    Article  Google Scholar 

  15. Mohamed, E.A., Yusoff, M.Z., Malik, A.S., et al.: Comparison of EEG signal decomposition methods in classification of motor-imagery BCI. Multimed. Tools Appl. 77(16), 21305–21327 (2017)

    Article  Google Scholar 

  16. Wang, H., Zhao, H.B., Liu, C.: Feature extraction from electroencephalography signal using wavelet entropy and band power. J. Jilin Univ. 41(3), 828–831 (2011)

    Google Scholar 

  17. Burke, D.B., Kelly, S.P., Reilly, R.B., et al.: A parametric feature extraction and classification strategy for brain-computerinter facing. IEEE T Neur. Syst. Reh. 13(1), 12–17 (2005)

    Article  Google Scholar 

  18. Wang, T., Zhang, M., Yu, Q., Zhang, H.: Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. J. Appl. Geophys. 83, 29–34 (2012)

    Google Scholar 

  19. Tang, L., Cui, Z., Liu, K.: Analysis and construction of EEMD smart model and fuzzy forecasting through improved bayesian estimation. J. Phys.: Conf. Ser. 1982(1), 012029 (2021)

    Google Scholar 

  20. Faust, O., Acharya, U.R.A., deli H, Adeli A,: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26, 56–64 (2015)

    Article  Google Scholar 

  21. Lalloué, B., Monnez, J.M., Albuisson, E.: Construction and update of an online ensemble score involving linear discriminant analysis and logistic regression. Appl. Math. 13(2), 15 (2022)

    Article  Google Scholar 

  22. Handoyo, S., Chen, Y.P., Irianto, G., et al.: The varying threshold values of logistic regression and linear discriminant for classifying fraudulent firm. Math. Stat. 9(2), 135–143 (2021)

    Article  Google Scholar 

  23. Cai, L.H., Cao, J., Wang, M.Q., Zhou, T., Fang, H.F.: The recognition of plastic bottle using linear multi hierarchical SVM classifier. J. Intell. Fuzzy Syst. 40(6) (2021)

    Google Scholar 

  24. Zhao, D., Hu, X., Xiong, S., et al.: K-means clustering and kNN classification based on negative databases. Appl. Soft Comput.Comput. 110(1), 107732 (2021)

    Article  Google Scholar 

  25. Jiang, Z., Bian, Z., Wang, S.: Multi-view local linear KNN classification:theoretical and experimental studies on image classification. Int. J. Mach. Learn. Cyb. 11(3), 525–543 (2020)

    Article  Google Scholar 

  26. Priya, E.: Resnet based feature extraction with decision tree classifier for classificaton of mammogram images. Turk. J. Math. 12(2), 1147–1153 (2021)

    Google Scholar 

  27. Khajenezhad, A., Bashiri, M.A., Beigy, H.: A distributed density estimation algorithm and its application to naive Bayes classification. Appl. Soft Comput.Comput. 98(6), 106837 (2020)

    Google Scholar 

  28. Anglani, A., Pacella, M.: Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. Procedia CIRP 99, 307–312 (2021)

    Article  Google Scholar 

  29. Villacampa-Calvo, C., Hernandez-Lobato, D.: Alpha divergence minimization in multi-class Gaussian process classification. Neurocomputing 378, 210–227 (2022)

    Article  Google Scholar 

  30. Jiménez-García, J., Gutiérrez-Tobal, G.C., Garcia, M., et al.: Assessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using adaboost. Entropy-Switz. 22(6), 670 (2020)

    Article  Google Scholar 

  31. Shrestha, B., Stephen, H., Ahmad, S.: Impervious surfaces mapping at city scale by fusion of radar and optical data through a random forest classifier. Remote Sens.-Basel 13(15), 3040 (2021)

    Article  Google Scholar 

  32. Gopal, V.N., Al-Turjman, F., Kumar, R., Anand, L., Rajesh, M.: Feature selection and classification in breast cancer prediction using iot and machine learning. Measurement 178(6), 109442 (2021)

    Article  Google Scholar 

  33. Meng, Z.: Research on timbre classification based on BP neural network and MFCC. J. Phys.: Conf. Ser. 1856(1), 012006 (2021)

    Google Scholar 

  34. Fitzpatrick, R.C., Day, B.L.: Probing the human vestibular system using galvanic stimulation. J. Appl. Physiol. 96(6), 2301–2316 (2004)

    Article  Google Scholar 

  35. Day, B.L., Guerraz, M., Cole, J.: Sensory interactions for human balance control revealed by galvanic vestibular stimulation. Adv. Exp. Med. Biol. 508, 129–137 (2002)

    Article  Google Scholar 

  36. Utz, K.S., Violeta, D., Karin, O., et al.: Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia 48(10), 2789–2810 (2010)

    Article  Google Scholar 

  37. Gu, L.X., Chen, J.Y., Zhang, Q., et al.: Effect of the course of benign paroxysmal positional vertigo in the posterior semicircular canal on residual symptoms after successful reduction. J. Otolaryngol.-Head N 35(11), 976–980 (2021)

    Google Scholar 

  38. Huang, N., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  39. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart C 278(6), 2039–2049 (2000)

    Article  Google Scholar 

  40. Gordon, A.G.: Electroencephalography in dizzy patients. Acta Neurol. Scand. 79(6), 521–522 (1989)

    Article  Google Scholar 

Download references

Acknowledgment

This work is This work was supported in part by the National Natural Science Foundation of China under Grant “51877067”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, Y., Xue, W. (2024). Study on the Detection of Vertigo Induced by GVS Based on EEG Signal Feature Binary Classification. In: Wang, G., Yao, D., Gu, Z., Peng, Y., Tong, S., Liu, C. (eds) 12th Asian-Pacific Conference on Medical and Biological Engineering. APCMBE 2023. IFMBE Proceedings, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-031-51485-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51485-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51484-5

  • Online ISBN: 978-3-031-51485-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics