Skip to main content

Trajectory Hiding and Sharing for Supply Chains with Differential Privacy

  • Conference paper
  • First Online:
Computer Security – ESORICS 2023 (ESORICS 2023)

Abstract

With the fast development of e-commerce, there is a higher demand for timely delivery. Logistic companies want to send receivers a more accurate arrival prediction to improve customer satisfaction and lower customer retention costs. One approach is to share (near) real-time location data with recipients, but this also introduces privacy and security issues such as malicious tracking and theft. In this paper, we propose a privacy-preserving real-time location sharing system including (1) a differential privacy based location publishing method and (2) location sharing protocols for both centralized and decentralized platforms. Different from existing location perturbation solutions which only consider privacy in theory, our location publishing method is based on a real map and different privacy levels for recipients. Our analyses and proofs show that the proposed location publishing method provides better privacy protection than existing works under real maps against possible attacks. We also provide a detailed analysis of the choice of the privacy parameter and their impact on the suggested noisy location outputs. The experimental results demonstrate that our proposed method is feasible for both centralized and decentralized systems and can provide more precise arrival prediction than using time slots in current delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agatz, N.A.H., Campbell, A.M., Fleischmann, M., Savelsbergh, M.W.P.: Time slot management in attended home delivery. Transp. Sci. 45(3), 435–449 (2011). https://doi.org/10.1287/trsc.1100.0346

    Article  Google Scholar 

  2. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 901–914. ACM (2013). https://doi.org/10.1145/2508859.2516735

  3. Auditshipment: The true cost of package delivery delays (2021). https://www.auditshipment.com/blog/the-true-cost-of-package-delivery-delays/. Accessed 7 Nov 2021

  4. Branch, A.E.: Global Supply Chain Management and International Logistics. Routledge, Abingdon (2008)

    Google Scholar 

  5. Brunswicker, S., Van de Vrande, V.: Exploring open innovation in small and medium-sized enterprises. New Front. Open Innov. 1, 135–156 (2014)

    Article  Google Scholar 

  6. DHL: Parcel delivery in real time (2021). https://www.dhl.de/en/privatkunden/pakete-empfangen/sendungen-verfolgen/live-tracking.html. Accessed 07 Jan 2022

  7. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  9. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: Schulman, L.J. (ed.) STOC 2010, pp. 715–724. ACM (2010). https://doi.org/10.1145/1806689.1806787

  10. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014). https://doi.org/10.1561/0400000042

    Article  MathSciNet  Google Scholar 

  11. Van den Engel, A., Prummel, E.: Organised theft of commercial vehicles and their loads in the European union. European Parliament. Directorate General Internal Policies of the Union. Policy Department Structural and Cohesion Policies. Transport and Tourism, Brussels (2007)

    Google Scholar 

  12. Fang, C., Chang, E.: Differential privacy with \(\delta \)-neighbourhood for spatial and dynamic datasets. In: Moriai, S., Jaeger, T., Sakurai, K. (eds.) ASIA CCS 2014, pp. 159–170. ACM (2014). https://doi.org/10.1145/2590296.2590320

  13. Grmiling, M.: How real time tracking can improve logistics (2021). https://www.hublock.io/how-real-time-tracking-can-improve-logistics/. Accessed 17 Nov 2021

  14. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2006). https://doi.org/10.1007/b97644

    Book  Google Scholar 

  15. Harnsamut, N., Natwichai, J., Riyana, S.: Privacy preservation for trajectory data publishing by look-up table generalization. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.) ADC 2018. LNCS, vol. 10837, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92013-9_2

    Chapter  Google Scholar 

  16. Hayashida, S., Amagata, D., Hara, T., Xie, X.: Dummy generation based on user-movement estimation for location privacy protection. IEEE Access 6, 22958–22969 (2018). https://doi.org/10.1109/ACCESS.2018.2829898

    Article  Google Scholar 

  17. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 603–618. ACM (2017). https://doi.org/10.1145/3133956.3134012

  18. ISO: ISO/IEC 11770-2:2008, Information technology – Security techniques – Key Management – Part 2: Mechanisms using Symmetric Techniques (2009)

    Google Scholar 

  19. Jiang, H., Li, J., Zhao, P., Zeng, F., Xiao, Z., Iyengar, A.: Location privacy-preserving mechanisms in location-based services: a comprehensive survey. ACM Comput. Surv. 54(1), 4:1–4:36 (2022). https://doi.org/10.1145/3423165

  20. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential privacy. In: Bach, F.R., Blei, D.M. (eds.) ICML 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 1376–1385. JMLR.org (2015). http://proceedings.mlr.press/v37/kairouz15.html

  21. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event sequences over infinite streams. Proc. VLDB Endow. 7(12), 1155–1166 (2014). https://doi.org/10.14778/2732977.2732989

  22. Maouchi, M.E., Ersoy, O., Erkin, Z.: DECOUPLES: a decentralized, unlinkable and privacy-preserving traceability system for the supply chain. In: Hung, C., Papadopoulos, G.A. (eds.) SAC 2019, pp. 364–373. ACM (2019). https://doi.org/10.1145/3297280.3297318

  23. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) SIGMOD 2009, pp. 19–30. ACM (2009). https://doi.org/10.1145/1559845.1559850

  24. Moriarty, K.M., Kaliski, B., Rusch, A.: PKCS #5: password-based cryptography specification version 2.1. RFC 8018, 1–40 (2017). https://doi.org/10.17487/RFC8018

  25. Saberi, S., Kouhizadeh, M., Sarkis, J., Shen, L.: Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 57(7), 2117–2135 (2019). https://doi.org/10.1080/00207543.2018.1533261

    Article  Google Scholar 

  26. Sahai, S., Singh, N., Dayama, P.: Enabling privacy and traceability in supply chains using blockchain and zero knowledge proofs. In: Blockchain 2020, pp. 134–143. IEEE (2020). https://doi.org/10.1109/Blockchain50366.2020.00024

  27. Savona, E.U.: Organised property crime in the EU. European Parliament. Directorate General for Internal Policies. Policy Department for Citizens’ Rights and Constitutional Affairs (2020)

    Google Scholar 

  28. Seres, I.A., Nagy, D.A., Buckland, C., Burcsi, P.: Mixeth: efficient, trustless coin mixing service for ethereum. Cryptology ePrint Archive, Report 2019/341 (2019)

    Google Scholar 

  29. Sezer, B.B., Topal, S., Nuriyev, U.: An auditability, transparent, and privacy-preserving for supply chain traceability based on blockchain. CoRR abs/2103.10519 (2021). https://arxiv.org/abs/2103.10519

  30. Shoup, V.: A proposal for an ISO standard for public key encryption. IACR Cryptol. ePrint Arch, p. 112 (2001). http://eprint.iacr.org/2001/112

  31. Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.R.: Sidechain technologies in blockchain networks: an examination and state-of-the-art review. J. Netw. Comput. Appl. 149 (2020). https://doi.org/10.1016/j.jnca.2019.102471

  32. Terrovitis, M., Poulis, G., Mamoulis, N., Skiadopoulos, S.: Local suppression and splitting techniques for privacy preserving publication of trajectories. IEEE Trans. Knowl. Data Eng. 29(7), 1466–1479 (2017). https://doi.org/10.1109/TKDE.2017.2675420

    Article  Google Scholar 

  33. Wang, H., Xu, Z.: CTS-DP: publishing correlated time-series data via differential privacy. Knowl. Based Syst. 122, 167–179 (2017). https://doi.org/10.1016/j.knosys.2017.02.004

    Article  Google Scholar 

  34. Wong, L., Leong, L., Hew, J., Tan, G.W., Ooi, K.: Time to seize the digital evolution: adoption of blockchain in operations and supply chain management among malaysian smes. Int. J. Inf. Manag. 52, 101997 (2020). https://doi.org/10.1016/j.ijinfomgt.2019.08.005

    Article  Google Scholar 

  35. Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal correlations. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1298–1309. ACM (2015). https://doi.org/10.1145/2810103.2813640

  36. Xiong, P., Zhu, T., Pan, L., Niu, W., Li, G.: Privacy preserving in location data release: a differential privacy approach. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 183–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_15

    Chapter  Google Scholar 

  37. Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining interesting locations and travel sequences from GPS trajectories. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) WWW 2009, pp. 791–800. ACM (2009). https://doi.org/10.1145/1526709.1526816

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Li .

Editor information

Editors and Affiliations

A Deferred Proofs and Figures

A Deferred Proofs and Figures

1.1 A.1 Proof for Lemma 2

Lemma 2.(Anonymity and unlinkability) A PPT adversary \(\mathcal {A}\) can not derive the receiver of a stealth address or distinguish the receiver of two different stealth addresses in Protocol 3.

Proof

Assume that a PPT adversary \(\mathcal {A}\) holds a stealth address (PR) and \(p_{id}\) and a list of tuples \((TK_{i,p_{id}}, K_{b_i})\), \(\mathcal {A}\) needs to compute \(P^\prime = H_s(rTK_{i,p_{id}})G + K_{b_i})\) such that \(P^\prime = P\). To find such a \(P^\prime \), \(\mathcal {A}\) need to compute \(P-K_{b_i} = H_s(rTK_{i,p_{id}})G\). Because of the one-wayness of ECDLP, it is computationally infeasible to compute the \(H_s(rTK_{i,p_{id}})\). And since \(\mathcal {A}\) does not know the secret value r, he can not contrust \(P^\prime = H_s(rTK_{i,p_{id}})G + K_{b_i})\) himself. Therefore, it is infeasible for \(\mathcal {A}\) to derive the receiver of (PR).

Similarly, assume that \(\mathcal {A}\) gets two stealth addresses \((P_1,R_1)\) and \((P_2, R_2)\), \(\mathcal {A}\) needs to distinguish the following two scenarios: (1) two stealth addresses belong to the same receiver, and (2) two stealth addresses belong to two different receivers. For scenario (1), \(\mathcal {A}\) computes \(P_1 - P_2\) as:

$$\begin{aligned} \begin{aligned} P_1 - P_2 &= H_s(rTK_{p_{id1}})G + K_b - (H_s(rTK_{p_{id2}}) + K_b)\\ &= (H_s(rTK_{p_{id1}}) - H_s(rTK_{p_{id2}}))G\\ &= xG \text { for some unknown x.} \end{aligned} \end{aligned}$$
(14)

Since the adversary \(\mathcal {A}\) does not hold \(p_{id1}, p_{id2}\) and r, \((H_s(rTK_{p_{id1}}) - H_s(rTK_{p_{id2}}))\) is a secret value x for him. For scenario (2), \(\mathcal {A}\) computes \(P_1 - P_2\) as:

$$\begin{aligned} \begin{aligned} P_1 - P_2 &= H_s(r_1 TK_{p_{id1}})G + K_{b_1} - (H_s(r_2 TK_{p_{id2}}) + K_{b_2}) \\ &= (H_s(r_1 TK_{p_{id1}}) - H_s(r_2 TK_{p_{id2}}) + K_{b_1} - K_{b_2})G \\ &= yG \text { \ \ \ for any unknown y.} \end{aligned} \end{aligned}$$
(15)

The adversary \(\mathcal {A}\) does not hold \(p_{id1},\ p_{id2},\ r_1,\ r_2\), so \((H_s(r_1TK_{p_{id1}}) - H_s(r_2TK_{p_{id2}}) + K_{b_1} - K_{b_2})G\) is a secret for \(\mathcal {A}\).

In both scenarios, the adversary \(\mathcal {A}\) can not derive the secret value. Given two different stealth addresses, it is computationally infeasible for \(\mathcal {A}\) to distinguish.

1.2 A.2 Proof of Lower Storage Cost

Fig. 11.
figure 11

An example output by PL\(_\epsilon \), and the filtered output of the sanitized trajectory. The blue line shows the actual trajectory, the red line shows the published trajectory by PL\(_\epsilon \), and the green line shows the filtered trajectory. (Color figure online)

figure d

Lemma 3

The proposed encryption method has lower storage costs than DECOUPLES [22].

Proof

The space cost for only using ECIES is \(S_{ECIES} = N_{P}(e+(p,r))\). To compare the space cost of the encryption algorithm S and \(S_{ECIES}\), we compute \(S - S_{ECIES}\) as follows:

$$\begin{aligned} \begin{aligned} S-S_{ECIES} &= N_{L}e + N_{P}(k_{SE}+(p,r)) - N_{P}(e+(p,r)) \\ &\ = (N_{L} - N_{P})e + N_{P}(k_{SE}-e) \end{aligned} \end{aligned}$$
(16)

Since many products share the same location, we have \(N_{L} < N_{P} < 0\). If \(e > k_{SE}\), we get \(S-S_{ECIES} < 0\) (the size of the encrypted data is larger than the size of the symmetric key). Our encryption method requires less storage than ECIES.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Xu, L., Erkin, Z., Lagendijk, R.L. (2024). Trajectory Hiding and Sharing for Supply Chains with Differential Privacy. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds) Computer Security – ESORICS 2023. ESORICS 2023. Lecture Notes in Computer Science, vol 14345. Springer, Cham. https://doi.org/10.1007/978-3-031-51476-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51476-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51475-3

  • Online ISBN: 978-3-031-51476-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics