Skip to main content

Context-Aware Trace Contracts

  • Chapter
  • First Online:
Active Object Languages: Current Research Trends

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14360))

  • 147 Accesses

Abstract

The behavior of concurrent, asynchronous procedures depends in general on the call context, because of the global protocol that governs scheduling. This context cannot be specified with the state-based Hoare-style contracts common in deductive verification. Recent work generalized state-based to trace contracts, which permit to specify the internal behavior of a procedure, such as calls or state changes, but not its call context. In this article we propose a program logic of context-aware trace contracts for specifying global behavior of asynchronous programs. We also provide a sound proof system that addresses two challenges: To observe the program state not merely at the end points of a procedure, we introduce the novel concept of an observation quantifier. And to combat combinatorial explosion of possible call sequences of procedures, we transfer Liskov’s principle of behavioral subtyping to the analysis of asynchronous procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional specification elements, such as frames or exceptional behavior, can be considered as syntactic sugar to achieve concise post-conditions.

  2. 2.

    We do not add the value to be written as a parameter, again for simplicity. This can be easily modelled with a global variable, if desired.

  3. 3.

    Evaluation of a single process, in a known context.

  4. 4.

    The split between local and global is inspired by the LAGC semantics for Active Objects [14]. There are some technical differences between our semantics and LAGC, most prominently that both our local and global semantics are only defined on concrete traces: We do not evaluate symbolically.

  5. 5.

    This can be generalized as usual, if needed.

  6. 6.

    \(\lceil q_{a_m}\rceil \) and \(\lceil q_{c_m}\rceil \) correspond to \(\lceil Pre\rceil \) and \(\lceil Post\rceil \) above. Of course, it is redundant that these formulas occur twice in \(C_m\), but we want each part of a trace contract to be readable on its own.

  7. 7.

    In practice, this split shape must be obtained by suitable weakening rules on trace formulas. The details are future work.

  8. 8.

    This insight was used already in [19] to formulate a Liskov principle for feature-oriented programming.

References

  1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS, vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

    Book  Google Scholar 

  2. Albert, E., de la Banda, M.G., Gómez-Zamalloa, M., Isabel, M., Stuckey, P.J.: Optimal context-sensitive dynamic partial order reduction with observers. In: Zhang, D., Møller, A. (eds.) Proceedings 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA, pp. 352–362. ACM (2019)

    Google Scholar 

  3. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming. In: OOPSLA Companion, pp. 1015–1022. ACM (2009)

    Google Scholar 

  4. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from microkernel verification - specification is the new bottleneck. In: Cassez, F., Huuck, R., Klein, G., Schlich, B. (eds.) Proceedings 7th Conference on Systems Software Verification. EPTCS, vol. 102, pp. 18–32 (2012)

    Google Scholar 

  5. Beckert, B., Bruns, D.: Dynamic logic with trace semantics. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 315–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_22

    Chapter  Google Scholar 

  6. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and coinduction. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 307–322. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_21

    Chapter  Google Scholar 

  7. Bubel, R., Gurov, D., Hähnle, R., Scaletta, M.: Trace-based deductive verification. In: Piskac, R., Voronkov, A. (eds.) Proceedings of 20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Manizales Colombia. EPiC Series in Computing. EasyChair (2023)

    Google Scholar 

  8. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

    Article  Google Scholar 

  9. de Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5), 76:1–76:39 (2017)

    Google Scholar 

  10. De Gouw, S., De Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying OpenJDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93–126 (2019)

    Article  MathSciNet  Google Scholar 

  11. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24851-4_21

    Chapter  Google Scholar 

  12. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_35

    Chapter  Google Scholar 

  13. Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tarifa, S.L.T.: LAGC semantics of concurrent programming languages. CoRR, abs/2202.12195 (2022)

    Google Scholar 

  14. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally abstract, globally concrete semantics of concurrent programming languages. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 22–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_2

    Chapter  Google Scholar 

  15. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared futures. Formal Aspects Comput. 27(3), 551–572 (2015)

    Article  MathSciNet  Google Scholar 

  16. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.: Larch: Languages and Tools for Formal Specification. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-2704-5

    Book  Google Scholar 

  17. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_18

    Chapter  Google Scholar 

  18. Hähnle, R., Kamburjan, E., Scaletta, M.: Context-aware trace contracts. CoRR, abs/2310.04384 (2023)

    Google Scholar 

  19. Hähnle, R., Schaefer, I.: A liskov principle for delta-oriented programming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32–46. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_4

    Chapter  Google Scholar 

  20. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)

    Article  MathSciNet  Google Scholar 

  21. Harel, D., Kozen, D., Parikh, R.: Process logic: expressiveness, decidability, completeness. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13–15 October 1980, pp. 129–142. IEEE Computer Society (1980)

    Google Scholar 

  22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, pp. 273–284 (2008)

    Google Scholar 

  23. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with the java modeling language. In: Deductive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6_7

    Chapter  Google Scholar 

  24. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

    Chapter  Google Scholar 

  25. Jones, C.B.: Developing methods for computer programs including a notion of interference. Ph.D. thesis, University of Oxford, UK (1981)

    Google Scholar 

  26. Jones, C.B.: Granularity and the development of concurrent programs. In: Brookes, S.D., Main, M.G., Melton, A., Mislove, M.W. (eds.) 11th Annual Conference on Mathematical Foundations of Programming Semantics, MFPS, New Orleans, LA, USA. ENTCS, vol. 1, pp. 302–306. Elsevier (1995)

    Google Scholar 

  27. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_22

    Chapter  Google Scholar 

  28. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_13

    Chapter  Google Scholar 

  29. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47846-3_19

    Chapter  Google Scholar 

  30. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Behavioral contracts for cooperative scheduling. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS, vol. 12345, pp. 85–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6_4

    Chapter  Google Scholar 

  31. Kamburjan, E., Scaletta, M., Rollshausen, N.: Deductive verification of active objects with crowbar. Sci. Comput. Program. 226, 102928 (2023)

    Article  Google Scholar 

  32. Kassios, I.T.: The dynamic frames theory. Form. Asp. Comput. 23(3), 267–288 (2011)

    Article  MathSciNet  Google Scholar 

  33. Leavens, G.T., et al.: JML Reference Manual (2013). Draft revision 2344

    Google Scholar 

  34. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994)

    Article  Google Scholar 

  35. Meyer, B.: Applying “design by contract’’. IEEE Comput. 25(10), 40–51 (1992)

    Article  Google Scholar 

  36. Mota, J., Giunti, M., Ravara, A.: On using verifast, vercors, plural, and key to check object usage. CoRR, abs/2209.05136 (2022)

    Google Scholar 

  37. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_2

    Chapter  Google Scholar 

  38. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step semantics of While. Log. Methods Comput. Sci. 11(1), 1–32 (2015)

    MathSciNet  Google Scholar 

  39. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_4

    Chapter  Google Scholar 

  40. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  41. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS, pp. 55–74. IEEE Computer Society (2002)

    Google Scholar 

  42. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56, 72–99 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Research Council of Norway via the SIRIUS Centre (237898) and the PeTWIN project (294600), as well as the Hessian LOEWE initiative within the Software-Factory 4.0 project.

We profited enormously from the detailed and constructive remarks of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Hähnle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hähnle, R., Kamburjan, E., Scaletta, M. (2024). Context-Aware Trace Contracts. In: de Boer, F., Damiani, F., Hähnle, R., Broch Johnsen, E., Kamburjan, E. (eds) Active Object Languages: Current Research Trends. Lecture Notes in Computer Science, vol 14360. Springer, Cham. https://doi.org/10.1007/978-3-031-51060-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51060-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51059-5

  • Online ISBN: 978-3-031-51060-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics