Skip to main content

Using Plants as Vaccines

  • Chapter
  • First Online:
Recent Advances in Industrial Biochemistry

Abstract

Vaccines are the most important strategy to fight many diseases. Plant-based vaccines have gained importance over the past decades, especially in combating SARS-CoV-2 and cancer. Some plant-based vaccines remain in trial phases, but many of them have been applied and have yielded positive results. The production of vaccines in plants follows several steps: isolating the gene of interest and producing the desired vaccine. These vaccines are cheap, can be produced in large quantities, and have exhibited great immune responses. The production and purification of these plant-based vaccines, however, present many challenges. This chapter overviews the current status of plant-based vaccines and their production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adem, M., Beyene, D., & Feyissa, T. (2017). Recent achievements obtained by chloroplast transformation. Plant Methods, 13(1), 1–11.

    Article  Google Scholar 

  • Aghebati-Maleki, L., Bakhshinejad, B., Baradaran, B., Motallebnezhad, M., Aghebati-Maleki, A., Nickho, H., et al. (2016). Phage display as a promising approach for vaccine development. Journal of Biomedical Science, 23(1), 1–18.

    Article  Google Scholar 

  • Altindis, E., Iz, S. G., Ozen, M. O., Nartop, P., Gurhan, I. D., & Gurel, A. (2014). Plant derived edible vaccines and therapeutics. Frontiers in Clinical Drug Research - Anti Infectives, 1(200), 10.2174.

    Google Scholar 

  • Athey-Pollard, A., Burns, C., Peter, R., Bailey, A., & Foster, G. D. (2002). PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycological Research, 106(1), 4–11.

    Article  Google Scholar 

  • Atiq, G., Nasrullah Khan, N., Raheem, M. A. R., & Iqbal, R. K. (2019). Plant transformation in biotechnology. Middle East Journal of Applied Science & Technology (MEJAST), 2(3), 103–123.

    Google Scholar 

  • Bhatia, S., Bera, T., Dahiya, R., Bera, T., Bhatia, S., & Bera, T. (2015). Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In Modern applications of plant biotechnology in pharmaceutical sciences (pp. 231–291).

    Chapter  Google Scholar 

  • Břiza, J., Vlasák, J., Ryba, Š., Ludvíková, V., & Niedermeierová, H. (2013). Transformation of tobacco cpDNA with fusion E7GGG/GUS gene and homologous recombination mediated elimination of the marker gene. Biotechnology & Biotechnological Equipment, 27(2), 3644–3648.

    Article  Google Scholar 

  • Burton, D. R. (2017). What are the most powerful immunogen design vaccine strategies? Reverse vaccinology 2.0 shows great promise. Cold Spring Harbor Perspectives in Biology, 9(11), a030262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cagliari, D., Dias, N. P., Galdeano, D. M., Dos Santos, E. Á., Smagghe, G., & Zotti, M. J. (2019). Management of pest insects and plant diseases by non-transformative RNAi. Frontiers in Plant Science, 10, 1319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capell, T., Twyman, R. M., Armario-Najera, V., Ma, J. K.-C., Schillberg, S., & Christou, P. (2020). Potential applications of plant biotechnology against SARS-CoV-2. Trends in Plant Science, 25(7), 635–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter, M., & Shieh, J. C. (2015). Guide to research techniques in neuroscience. Academic Press.

    Google Scholar 

  • Chebolu, S., & Daniell, H. (2009). Chloroplast-derived vaccine antigens and biopharmaceuticals: Expression, folding, assembly and functionality. In Plant-produced microbial vaccines (pp. 33–54). Springer.

    Chapter  Google Scholar 

  • Chichester, J. A., Jones, R. M., Green, B. J., Stow, M., Miao, F., Moonsammy, G., et al. (2012). Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: A phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses, 4(11), 3227–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, M., & Maselko, M. (2020). Transgene biocontainment strategies for molecular farming. Frontiers in Plant Science, 11, 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui, Y., Qin, S., & Jiang, P. (2014). Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS One, 9(6), e98607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings, J. F., Guerrero, M. L., Moon, J. E., Waterman, P., Nielsen, R. K., Jefferson, S., et al. (2014). Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1) pdm09 virus: A phase 1 dose-escalation study in healthy adults. Vaccine, 32(19), 2251–2259.

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust, M. A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L. P. (2010). The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnology Journal, 8(5), 607–619.

    Article  PubMed  Google Scholar 

  • Díaz, A., Villanueva, P., Oliva, V., Gil-Durán, C., Fierro, F., Chávez, R., & Vaca, I. (2019). Genetic transformation of the filamentous fungus Pseudogymnoascus verrucosus of Antarctic origin. Frontiers in Microbiology, 10, 2675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esland, S. (n.d.). Markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii. In Biology.

    Google Scholar 

  • Gottschamel, J., Waheed, M. T., Clarke, J. L., & Lössl, A. G. (2013). A novel chloroplast transformation vector compatible with the gateway® recombination cloning technology. Transgenic Research, 22(6), 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Govea-Alonso, D. O., Cardineau, G. A., & Rosales-Mendoza, S. (2014). Principles of plant-based vaccines. In Genetically engineered plants as a source of vaccines against wide spread diseases (pp. 1–14). Springer.

    Google Scholar 

  • Greer, A. L. (2015). Early vaccine availability represents an important public health advance for the control of pandemic influenza. BMC Research Notes, 8(1), 1–13.

    Article  CAS  Google Scholar 

  • Guillermo, M. J., Genelsa, E., Guiam-an, L., Ladaga, J., Maceren, I., Pangolima, Z. Z., & Abiso-Padilla, J. (n.d.). The promising potential of plant-based edible vaccines: A review. Journal homepage: www. ijrpr. com ISSN, 2582, 7421.

    Google Scholar 

  • Hager, K. J., Pérez Marc, G., Gobeil, P., Diaz, R. S., Heizer, G., Llapur, C., et al. (2022). Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. New England Journal of Medicine, 386, 2084.

    Article  CAS  PubMed  Google Scholar 

  • Hiatt, A., Caffferkey, R., & Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature, 342(6245), 76–78.

    Article  CAS  PubMed  Google Scholar 

  • https://www.medicago.com (Medicago Inc., 2020).

  • Isakova-Sivak, I., Stepanova, E., Mezhenskaya, D., Matyushenko, V., Prokopenko, P., Sychev, I., et al. (2021). Influenza vaccine: Progress in a vaccine that elicits a broad immune response. Expert Review of Vaccines, 20(9), 1097–1112.

    Article  CAS  PubMed  Google Scholar 

  • Jinturkar, K. A., Rathi, M. N., & Misra, A. (2011). Gene delivery using physical methods. In Challenges in delivery of therapeutic genomics and proteomics (pp. 83–126). Elsevier.

    Chapter  Google Scholar 

  • Kapusta, J., Modelska, A., Figlerowicz, M., Pniewski, T., Letellier, M., Lisowa, O., et al. (1999). A plant-derived edible vaccine against hepatitis B virus. The FASEB Journal, 13(13), 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  • Kaushal, C., Abdin, M. Z., & Kumar, S. (2020). Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnology Journal, 18(11), 2155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, A., Khan, A., Khan, I., Shehzad, M. A., Ali, W., Muhammad, A., & Akif, M. (2019). A review on natural way of vaccination: Plant derived edible vaccines. Journal of Vaccines and Immunology, 5(1), 018–021.

    Article  Google Scholar 

  • Khattak, S. H., Begum, S., Aqeel, M., Fayyaz, M., Bangash, S. A. K., Riaz, M. N., Saeed, S., Ahmed, A., & Ali, G. M. (2020). Investigating the allelic variation of loci controlling rust resistance genes in wheat (Triticum Aestivum L.) land races by SSR marker. Applied Ecology and Environmental Research, 18(6), 8091–8118.

    Google Scholar 

  • Kim, M.-Y., Yang, M.-S., & Kim, T.-G. (2009). Expression of dengue virus E glycoprotein domain III in non-nicotine transgenic tobacco plants. Biotechnology and Bioprocess Engineering, 14(6), 725–730.

    Article  CAS  Google Scholar 

  • Kirk, D. D., McIntosh, K., Walmsley, A. M., & Peterson, R. K. (2005). Risk analysis for plant-made vaccines. Transgenic Research, 14(4), 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korban, S. S. (2002). Targeting and expression of antigenic proteins in transgenic plants for production of edible oral vaccines. In Vitro Cellular & Developmental Biology-Plant, 38(3), 231–236.

    Article  CAS  Google Scholar 

  • Kumar, A. U., & Ling, A. P. K. (2021). Gene introduction approaches in chloroplast transformation and its applications. Journal of Genetic Engineering and Biotechnology, 19(1), 1–10.

    Article  Google Scholar 

  • Kumar, M., Kumari, N., Thakur, N., Bhatia, S. K., Saratale, G. D., Ghodake, G., et al. (2021). A comprehensive overview on the production of vaccines in plant-based expression systems and the scope of plant biotechnology to combat against SARS-CoV-2 virus pandemics. Plants, 10(6), 1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix, B., & Citovsky, V. (2020). Biolistic approach for transient gene expression studies in plants. In Biolistic DNA delivery in plants (pp. 125–139).

    Chapter  Google Scholar 

  • Laere, E., Ling, A. P. K., Wong, Y. P., Koh, R. Y., Mohd Lila, M. A., & Hussein, S. (2016). Plant-based vaccines: Production and challenges. Journal of Botany, 2016, 1.

    Article  Google Scholar 

  • Landry, N., Ward, B. J., Trépanier, S., Montomoli, E., Dargis, M., Lapini, G., & Vézina, L.-P. (2010). Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One, 5(12), e15559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavelle, E. C., & Ward, R. W. (2022). Mucosal vaccines—Fortifying the frontiers. Nature Reviews Immunology, 22(4), 236–250.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.-F., Park, E., von Arnim, A. G., & Nebenführ, A. (2009). The FAST technique: A simplified agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 5(1), 1–15.

    Article  Google Scholar 

  • Liu, Z., & Friesen, T. L. (2012). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. In Plant fungal pathogens (pp. 365–375). Springer.

    Chapter  Google Scholar 

  • Liu, Y.-C., & Vidali, L. (2011). Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. JoVE (Journal of Visualized Experiments), 50, e2560.

    Google Scholar 

  • Liu, L., Zhao, Q., & Goh, M. (2021). Perishable material sourcing and final product pricing decisions for two-echelon supply chain under price-sensitive demand. Computers & Industrial Engineering, 156, 107260.

    Article  Google Scholar 

  • Loessl, A., & Waheed, M. (2011). Chloroplast-derived vaccines against human diseases: Achievements, challenges and scopes (vol 9, pg 527, 2011). Plant Biotechnology Journal, 9(7), 817–817.

    Google Scholar 

  • Low, L.-Y., Yang, S.-K., Kok, D.-X. A., Ong-Abdullah, J., Tan, N.-P., & Lai, K.-S. (2018). Transgenic plants: Gene constructs, vector and transformation method. In New visions in plant science (pp. 41–61).

    Google Scholar 

  • Masani, M. Y. A., Noll, G. A., Parveez, G. K. A., Sambanthamurthi, R., & Prüfer, D. (2014). Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One, 9(5), e96831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur, J., & Koncz, C. (1998). PEG-mediated protoplast transformation with naked DNA. In Arabidopsis Protocols (pp. 267–276). Springer.

    Chapter  Google Scholar 

  • Matsumoto, T. K., & Gonsalves, D. (2012). Biolistic and other non-Agrobacterium technologies of plant transformation. In Plant biotechnology and agriculture (pp. 117–129). Elsevier.

    Chapter  Google Scholar 

  • Matsuoka, A. (2015). Genetic engineering of Agrobacterium tumefaciens to target chloroplasts and identification of a novel nuclear localization signal of VIRD2 protein. University of Lethbridge (Canada).

    Google Scholar 

  • McDonald, K. A., & Holtz, R. B. (2020). From farm to finger prick—A perspective on how plants can help in the fight against COVID-19. Frontiers in Bioengineering and Biotechnology, 8, 782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meriç, S., Gümüş, T., & Ayan, A. (2021). Plant-based Vaccines: The Future of Preventive Healthcare?. Botany—Recent Advances and Applications.

    Google Scholar 

  • Mestecky, J., Nguyen, H., Czerkinsky, C., & Kiyono, H. (2008). Oral immunization: an update. Current Opinion in Gastroenterology, 24(6), 713–719.

    Article  PubMed  Google Scholar 

  • Meyers, B., Zaltsman, A., Lacroix, B., Kozlovsky, S. V., & Krichevsky, A. (2010). Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnology Advances, 28(6), 747–756.

    Google Scholar 

  • Nanjareddy, K., Arthikala, M.-K., Blanco, L., Arellano, E. S., & Lara, M. (2016). Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: Tools for rapid gene expression analysis. BMC Biotechnology, 16(1), 1–14.

    Article  Google Scholar 

  • Nkanga, C. I., Ortega-Rivera, O. A., Shin, M. D., Moreno-Gonzalez, M. A., & Steinmetz, N. F. (2022). Injectable slow-release hydrogel formulation of a plant virus-based COVID-19 vaccine candidate. Biomacromolecules, 23(4), 1812–1825.

    Article  CAS  PubMed  Google Scholar 

  • Obermeyer, G., Gehwolf, R., Sebesta, W., Hamilton, N., Gadermaier, G., Ferreira, F., ... & Bentrup, F. W. (2004). Over-expression and production of plant allergens by molecular farming strategies. Methods, 32(3), 235–240.

    Google Scholar 

  • Ogrina, A., Skrastina, D., Balke, I., Kalnciema, I., Jansons, J., Bachmann, M. F., & Zeltins, A. (2022). Comparison of bacterial expression systems based on potato virus Y-like particles for vaccine generation. Vaccine, 10(4), 485.

    Article  CAS  Google Scholar 

  • Paolino, K. M., Regules, J. A., Moon, J. E., Ruck, R. C., Bennett, J. W., Remich, S. A., et al. (2022). Safety and immunogenicity of a plant-derived recombinant protective antigen (rPA)-based vaccine against Bacillus anthracis: A Phase 1 dose-escalation study in healthy adults. Vaccine, 40(12), 1864–1871.

    Article  CAS  PubMed  Google Scholar 

  • Parvathy, S. T. (2020). Engineering plants as platforms for production of vaccines. American Journal of Plant Sciences, 11(5), 707–735.

    Article  CAS  Google Scholar 

  • Perea Arango, I., Loza Rubio, E., Rojas Anaya, E., Olivera Flores, T., Gonzalez de la Vara, L., & Gómez Lim, M. A. (2008). Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice. Plant Cell Reports, 27(4), 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Pineda, E., Moreno, C., Escobar, F., & Halffter, G. (2005). Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conservation Biology, 19(2), 400–410.

    Article  Google Scholar 

  • Rahimian, N., Miraei, H. R., Amiri, A., Ebrahimi, M. S., Nahand, J. S., Tarrahimofrad, H., et al. (2021). Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacological Research, 169, 105655.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, V. M., Bingham, S. E., & Webber, A. N. (2004). A simple method for chloroplast transformation in Chlamydomonas reinhardtii. In Photosynthesis research protocols (pp. 301–307). Springer.

    Chapter  Google Scholar 

  • Rehman, L., Su, X., Guo, H., Qi, X., & Cheng, H. (2016). Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnology, 16(1), 1–9.

    Article  Google Scholar 

  • Rehman, M. A., Saleem, R., Hasan, S. W., Inam, S., Uddin, S. Z., Saeed, M., Noor, S., Riaz, M. N., Ali, G.M., & Khattak, S. H. (2020). Economic assessment of cereal-legume intercropping system, a way forward for improving productivity and sustaining soil health. Ijbpas, 9(5), 1078–1089.

    Google Scholar 

  • Rigano, M. M., & Walmsley, A. M. (2005). Expression systems and developments in plant-made vaccines. Immunology and Cell Biology, 83(3), 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Rogalska, T., Day, J., AbouHaidar, M., & Hefferon, K. (2011). Current status of plants as vaccine production platforms. Journal of Clinical and Cellular Immunology, 4, 2.

    Google Scholar 

  • Rosales-Mendoza, S. (2020). Will plant-made biopharmaceuticals play a role in the fight against COVID-19? Expert Opinion on Biological Therapy, 20(6), 545–548.

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza, S., Cervantes-Rincón, T., Romero-Maldonado, A., Monreal-Escalante, E., & Nieto-Gómez, R. (2021). Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnology Progress, 37(3), e3141.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, J., & Rawat, S. (2014). Edible vaccines. In Advances in biotechnology (pp. 207–226). Springer.

    Chapter  Google Scholar 

  • Sharma, A. K., & Sharma, M. K. (2009). Plants as bioreactors: Recent developments and emerging opportunities. Biotechnology Advances, 27(6), 811–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, M., & Sood, B. (2011). A banana or a syringe: Journey to edible vaccines. World Journal of Microbiology and Biotechnology, 27(3), 471–477.

    Article  CAS  Google Scholar 

  • Shim, B.-S., Hong, K.-J., Maharjan, P. M., & Choe, S. (2019). Plant factory: New resource for the productivity and diversity of human and veterinary vaccines. Clinical and Experimental Vaccine Research, 8(2), 136–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streatfield, S. J. (2005). Regulatory issues for plant-made pharmaceuticals and vaccines. Expert Review of Vaccines, 4(4), 591–601.

    Article  PubMed  Google Scholar 

  • Tacket, C. O., Mason, H. S., Losonsky, G., Estes, M. K., Levine, M. M., & Arntzen, C. J. (2000). Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. The Journal of Infectious Diseases, 182(1), 302–305.

    Article  CAS  PubMed  Google Scholar 

  • Takeyama, N., Kiyono, H., & Yuki, Y. (2015). Plant-based vaccines for animals and humans: Recent advances in technology and clinical trials. Therapeutic Advances in Vaccines, 3(5–6), 139–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thanavala, Y., Mahoney, M., Pal, S., Scott, A., Richter, L., Natarajan, N., et al. (2005). Immunogenicity in humans of an edible vaccine for hepatitis B. Proceedings of the National Academy of Sciences, 102(9), 3378–3382.

    Article  CAS  Google Scholar 

  • Tusé, D., Nandi, S., McDonald, K. A., & Buyel, J. F. (2020). The emergency response capacity of plant-based biopharmaceutical manufacturing-what it is and what it could be. Frontiers in Plant Science, 11, 1573.

    Article  Google Scholar 

  • Vermij, P., & Waltz, E. (2006). USDA approves the first plant-based vaccine. Nature Biotechnology, 24(3), 234.

    Google Scholar 

  • Webster, D. E., Thomas, M. C., Huang, Z., & Wesselingh, S. L. (2005). The development of a plant-based vaccine for measles. Vaccine, 23(15), 1859–1865.

    Google Scholar 

  • Yu, J., & Langridge, W. (2003). Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Research, 12(2), 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Yu, P.-C., Chang, W.-J., Yu, K., & Lin, C.-S. (2020). Plastid transformation: How does it work? Can it be applied to crops? What can it offer? International Journal of Molecular Sciences, 21(14), 4854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, G., Xu, X., & Zhang, W. (2019). Biolistic transformation of Haematococcus pluvialis with constructs based on the flanking sequences of its endogenous alpha tubulin gene. Frontiers in Microbiology, 10, 468625.

    Google Scholar 

  • Yusibov, V., Hooper, D., Spitsin, S., Fleysh, N., Kean, R., Mikheeva, T., et al. (2002). Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 20(25–26), 3155–3164.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Huang, R. Y. C., Jalili, P. R., Irungu, J. W., Nicol, G. R., Ray, K. B., et al. (2010). Improved mass spectrometric characterization of protein glycosylation reveals unusual glycosylation of maize-derived bovine trypsin. Analytical Chemistry, 82(24), 10095–10101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Yang, Y., Yang, D., Cheng, Y., Jiao, M., Zhan, G., et al. (2016). Characterization and genetic analysis of rice mutant crr1 exhibiting compromised non-host resistance to Puccinia striiformis f. sp. tritici (Pst). Frontiers in Plant Science, 7, 1822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zienkiewicz, M., Krupnik, T., Drozak, A., & Kania, K. (2019). PEG-mediated, Stable, Nuclear and Chloroplast Transformation of Cyanidioschizon merolae. Bio-Protocol, 9, e3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleem, A., Saeed, M.A., Shah, N.A., Kaleem, I., Ahmed, H., Khattak, S.H. (2024). Using Plants as Vaccines. In: Hashmi, M.Z., Saeed, A., Musharraf, S.G., Shuhong, W. (eds) Recent Advances in Industrial Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-50989-6_4

Download citation

Publish with us

Policies and ethics