Skip to main content

Current Trends in the Development and Biochemistry of Drugs

  • Chapter
  • First Online:
Recent Advances in Industrial Biochemistry

Abstract

Drug discovery (DD) has an unknown history since the origin of mankind with the process of the trial-and-error method. Modern-day DD primarily straddles three main periods, i.e., the nineteenth century, based on DD by chance by the medicinal chemists; the twentieth century, which spans the exploration and reporting of new drug structures; and finally, the twenty-first century, in which all known structures in conjunction with novel techniques, viz., molecular modeling, combinatorial chemistry, and automated high-throughput screening, led to huge advances in DD. In the start, the scientists examine the natural products themselves to find the exact effects. The isolation of active phytochemicals started in the early nineteenth century, while the advancement in chemical and biological sciences has led the modern DD and development. Moreover, recombinant DNA technology revolutionized the development of potential drugs with higher accuracy and precision. In addition, the onset of the “omics” (proteomics, genomics, metabolomics, etc.) era has boosted the increase in biopharmaceutical drugs approved by the FDA/EMEA for clinical uses. Currently, digital and disruptive technologies such as network pharmacology and molecular docking studies are changing the scenario of DD and development by producing more efficient, personalized drugs with little or no harm at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, N. G., & Wang, A. H. (2008). Proteomics and genomics: Perspectives on drug and target discovery. Current Opinion in Chemical Biology, 12(1), 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, M. (2013). Fragment-based lead discovery grows up: With multiple drug candidates in the clinic that originated from fragment-based lead discovery, the approach of starting small has become big. Nature Reviews Drug Discovery, 12(1), 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Barar, F. (2000). Essentials of pharmacotherapeutics. S. Chand Publishing.

    Google Scholar 

  • Beckmann, N., et al. (2007). In vivo mouse imaging and spectroscopy in drug discovery. NMR in Biomedicine, 20(3), 154–185.

    Article  PubMed  Google Scholar 

  • Bernhofer, M., et al. (2016). TMSEG: Novel prediction of transmembrane helices. Proteins: Structure, Function, and Bioinformatics, 84(11), 1706–1716.

    Article  CAS  Google Scholar 

  • Bevan, P., Ryder, H., & Shaw, I. (1995). Identifying small-molecule lead compounds: The screening approach to drug discovery. Trends in Biotechnology, 13(3), 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Birkholtz, L., et al. (2008). Exploring functional genomics for drug target and therapeutics discovery in plasmodia. Acta Tropica, 105(2), 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Boike, L., Henning, N. J., & Nomura, D. K. (2022). Advances in covalent drug discovery. Nature Reviews Drug Discovery. https://doi.org/10.1038/s41573-022-00542-z

  • Bollag, G., et al. (2012). Vemurafenib: The first drug approved for BRAF-mutant cancer. Nature Reviews Drug Discovery, 11(11), 873–886.

    Article  CAS  PubMed  Google Scholar 

  • Broglia, R., Levy, Y., & Tiana, G. (2008). HIV-1 protease folding and the design of drugs which do not create resistance. Current Opinion in Structural Biology, 18(1), 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, B. R., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, D. K., & Bishop, Ö. T. (2017). The role of structural bioinformatics in drug discovery via computational SNP analysis–a proposed protocol for analyzing variation at the protein level. Global Heart, 12(2), 151.

    Article  PubMed  Google Scholar 

  • Bunin, B. A., & Ellman, J. A. (1992). A general and expedient method for the solid-phase synthesis of 1, 4-benzodiazepine derivatives. Journal of the American Chemical Society, 114(27), 10997–10998.

    Article  CAS  Google Scholar 

  • Casali, N., et al. (2014). Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nature Genetics, 46(3), 279–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavagnaro, J. (2008). Implementation of ICH S6 and the case-by-case approach, in preclinical safety evaluation of biopharmaceuticals: A science-based approach to facilitating clinical trials (pp. 45–65). Wiley.

    Book  Google Scholar 

  • Cavasotto, C. N., & Phatak, S. S. (2009). Homology modeling in drug discovery: Current trends and applications. Drug Discovery Today, 14(13–14), 676–683.

    Article  CAS  PubMed  Google Scholar 

  • Chan, W. K., et al. (2015). GLASS: A comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics, 31(18), 3035–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelliah, V., et al. (2004). Distinguishing structural and functional restraints in evolution in order to identify interaction sites. Journal of Molecular Biology, 342(5), 1487–1504.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Jorgenson, E., & Cheung, S. T. (2009). New tools for functional genomic analysis. Drug Discovery Today, 14(15–16), 754–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, G., & Sundram, F. (2017). Understanding the progression from physical illness to suicidal behavior: A case study based on a newly developed conceptual model. Clinical Gerontologist, 40(2), 124–129.

    Article  PubMed  Google Scholar 

  • Chin, Y.-W., et al. (2006). Drug discovery from natural sources. The AAPS Journal, 8(2), E239–E253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, K.-C. (2015). Impacts of bioinformatics to medicinal chemistry. Medicinal Chemistry, 11(3), 218–234.

    Article  CAS  PubMed  Google Scholar 

  • Congreve, M., Murray, C. W., & Blundell, T. L. (2005). Keynote review: Structural biology and drug discovery. Drug Discovery Today, 10(13), 895–907.

    Article  CAS  PubMed  Google Scholar 

  • Cragg, G. M., & Newman, D. J. (2005). Biodiversity: A continuing source of novel drug leads. Pure and Applied Chemistry, 77(1), 7–24.

    Article  CAS  Google Scholar 

  • Curatolo, W. (1998). Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharmaceutical Science & Technology Today, 1(9), 387–393.

    Article  CAS  Google Scholar 

  • Dara, S., et al. (2021). Machine learning in drug discovery: A review. Artificial Intelligence Review, 1–53. https://doi.org/10.1007/s10462-021-10058-4

  • De Cesco, S., et al. (2017). Covalent inhibitors design and discovery. European Journal of Medicinal Chemistry, 138, 96–114.

    Article  PubMed  Google Scholar 

  • Di, L., & Kerns, E. (2015). Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic.

    Google Scholar 

  • Dias, M. H., et al. (2016). Proteomics and drug discovery in cancer. Drug Discovery Today, 21(2), 264–277.

    Article  CAS  PubMed  Google Scholar 

  • Ding, H., et al. (2014). Similarity-based machine learning methods for predicting drug–target interactions: A brief review. Briefings in Bioinformatics, 15(5), 734–747.

    Article  PubMed  Google Scholar 

  • Drews, J. (2000). Drug discovery: A historical perspective. Science, 287(5460), 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 1–9.

    Article  Google Scholar 

  • Ekins, S., et al. (2015). Machine learning models and pathway genome data base for Trypanosoma cruzi drug discovery. PLoS Neglected Tropical Diseases, 9(6), e0003878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emilien, G., et al. (2000). Impact of genomics on drug discovery and clinical medicine. QJM: An International Journal of Medicine, 93(7), 391–423.

    Article  CAS  PubMed  Google Scholar 

  • Evensen, E., et al. (2007). Ligand design by a combinatorial approach based on modeling and experiment: Application to HLA-DR4. Journal of Computer-Aided Molecular Design, 21(7), 395–418.

    Article  CAS  PubMed  Google Scholar 

  • Fodor, S. P., et al. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science, 251(4995), 767–773.

    Article  CAS  PubMed  Google Scholar 

  • Frankel, A., Millward, S. W., & Roberts, R. W. (2003). Encodamers: Unnatural peptide oligomers encoded in RNA. Chemistry & Biology, 10(11), 1043–1050.

    Article  CAS  Google Scholar 

  • Freyer, M. W., & Lewis, E. A. (2008). Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods in Cell Biology, 84, 79–113.

    Article  CAS  PubMed  Google Scholar 

  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269.

    Article  CAS  PubMed  Google Scholar 

  • Garnett, M. J., et al. (2012). Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483(7391), 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershell, L. J., & Atkins, J. H. (2003). A brief history of novel drug discovery technologies. Nature Reviews Drug Discovery, 2(4), 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Geysen, H. M., Meloen, R. H., & Barteling, S. J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, 81(13), 3998–4002.

    Article  CAS  Google Scholar 

  • Gfeller, D., et al. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(W1), W32–W38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, A. K., et al. (2019). Covalent inhibition in drug discovery. ChemMedChem, 14(9), 889–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, J., Henske, P., & Singh, A. (2003). Rebuilding big pharma’s business model. In Vivo-New York Then Norwalk, 21(10), 73–80.

    Google Scholar 

  • Goga, A., & Stoffel, M. (2022). Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nature Reviews Drug Discovery, 21(6), 417–439.

    Article  CAS  PubMed  Google Scholar 

  • Gohlke, B.-O., et al. (2016). CancerResource—Updated database of cancer-relevant proteins, mutations and interacting drugs. Nucleic Acids Research, 44(D1), D932–D937.

    Article  CAS  PubMed  Google Scholar 

  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(suppl_2), W270–W277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guideline, I. H. T. (2006). Impurities in new drug products. Q3B (R2), Current Step, 4, 1–5.

    Google Scholar 

  • Gupta, P., & Lee, K. H. (2007). Genomics and proteomics in process development: Opportunities and challenges. Trends in Biotechnology, 25(7), 324–330.

    Article  CAS  PubMed  Google Scholar 

  • Heal, J., et al. (2012). Inhibition of HIV-1 protease: The rigidity perspective. Bioinformatics, 28(3), 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Hecker, N., et al. (2012). SuperTarget goes quantitative: Update on drug–target interactions. Nucleic Acids Research, 40(D1), D1113–D1117.

    Article  CAS  PubMed  Google Scholar 

  • Heinis, C., et al. (2009). Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nature Chemical Biology, 5(7), 502–507.

    Article  CAS  PubMed  Google Scholar 

  • Holdgate, G., et al. (2013). Biophysical methods in drug discovery from small molecule to pharmaceutical. In Protein-ligand interactions (pp. 327–355). Springer.

    Chapter  Google Scholar 

  • Houghten, R. A., et al. (1991). Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 354(6348), 84–86.

    Article  CAS  PubMed  Google Scholar 

  • Huber, L. A. (2003). Is proteomics heading in the wrong direction? Nature Reviews Molecular Cell Biology, 4(1), 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Huber, W., & Mueller, F. (2006). Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Current Pharmaceutical Design, 12(31), 3999–4021.

    Article  CAS  PubMed  Google Scholar 

  • Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Grimmond, S. M., Pearson, J. V., Cloonan, N., Gardiner, B. A., Waddell, N. J., Wilson, P. J., & Wainwright, B. J. (2010). International network of cancer genome projects. Nature, 464(7291), 993–998.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, J. P., et al. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICH, E. (2011). Impurities: Guidelines for residual solvents Q3C (R5). ICH.

    Google Scholar 

  • Iskar, M., et al. (2012). Drug discovery in the age of systems biology: The rise of computational approaches for data integration. Current Opinion in Biotechnology, 23(4), 609–616.

    Article  CAS  PubMed  Google Scholar 

  • Josephson, K., Hartman, M. C., & Szostak, J. W. (2005). Ribosomal synthesis of unnatural peptides. Journal of the American Chemical Society, 127(33), 11727–11735.

    Article  CAS  PubMed  Google Scholar 

  • Kapetanovic, I. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171(2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Katara, P., et al. (2011). In silico prediction of drug targets in Vibrio cholerae. Protoplasma, 248(4), 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, H., & Oda, Y. (2007). Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography. Journal of Chromatography B, 855(1), 21–27.

    Article  CAS  Google Scholar 

  • Kennedy, J. P., et al. (2008). Application of combinatorial chemistry science on modern drug discovery. Journal of Combinatorial Chemistry, 10(3), 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Kesik-Brodacka, M. (2018). Progress in biopharmaceutical development. Biotechnology and Applied Biochemistry, 65(3), 306–322.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. I., et al. (2004). Neuroproteomics: Expression profiling of the brain’s proteomes in health and disease. Neurochemical Research, 29(6), 1317–1331.

    Article  CAS  PubMed  Google Scholar 

  • Kinnings, S. L., et al. (2010). The mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Computational Biology, 6(11), e1000976.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klabunde, T., et al. (1994). The amino acid sequence of the red kidney bean Fe (III)-Zn (II) purple acid phosphatase: Determination of the amino acid sequence by a combination of matrix-assisted laser desorption/ionization mass spectrometry and automated Edman sequencing. European Journal of Biochemistry, 226(2), 369–375.

    Article  CAS  PubMed  Google Scholar 

  • Kodadek, T. (2011). The rise, fall and reinvention of combinatorial chemistry. Chemical Communications, 47(35), 9757–9763.

    Article  CAS  PubMed  Google Scholar 

  • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3(8), 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Kopec, K. K., Bozyczko-Coyne, D., & Williams, M. (2005). Target identification and validation in drug discovery: The role of proteomics. Biochemical Pharmacology, 69(8), 1133–1139.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Purohit, R. (2014). Use of long term molecular dynamics simulation in predicting cancer associated SNPs. PLoS Computational Biology, 10(4), e1003318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, R. D., et al. (2013). Prioritizing potentially druggable mutations with dGene: An annotation tool for cancer genome sequencing data. PLoS One, 8(6), e67980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, K. S., et al. (1991). A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 354(6348), 82–84.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., et al. (2016a). A rapid python-based methodology for target-focused combinatorial library design. Combinatorial Chemistry & High Throughput Screening, 19(1), 25–35.

    Article  CAS  Google Scholar 

  • Li, J.-F., et al. (2016b). Sensitive sentinel mutation screening reveals differential underestimation of transmitted HIV drug resistance among demographic groups. AIDS, 30(9), 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, E., & Elofsson, A. (2000). Identification of related proteins on family, superfamily and fold level. Journal of Molecular Biology, 295(3), 613–625.

    Article  CAS  PubMed  Google Scholar 

  • Lipi, F., et al. (2016). In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biology, 13(12), 1232–1245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipinski, C. A., et al. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17.

    Article  Google Scholar 

  • Liu, R., et al. (2017a). Tumor-targeting peptides from combinatorial libraries. Advanced Drug Delivery Reviews, 110, 13–37.

    Article  PubMed  Google Scholar 

  • Liu, R., Li, X., & Lam, K. S. (2017b). Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology, 38, 117–126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh, M., & Soong, R. (2011). Challenges and pitfalls in the introduction of pharmacogenetics for cancer. Annals of the Academy of Medicine, Singapore, 40(8), 369–374.

    Article  PubMed  Google Scholar 

  • Lombardino, J. G., & Lowe, J. A. (2004). The role of the medicinal chemist in drug discovery—Then and now. Nature Reviews Drug Discovery, 3(10), 853–862.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, B. B., & Tiwari, V. K. (2011). Natural products: An evolving role in future drug discovery. European Journal of Medicinal Chemistry, 46(10), 4769–4807.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, H., et al. (2006). A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nature Methods, 3(5), 357–359.

    Article  CAS  PubMed  Google Scholar 

  • Musyoka, T. M., et al. (2016). Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Scientific Reports, 6(1), 1–12.

    Article  Google Scholar 

  • Nicolaou, C. A., & Kannas, C. C. (2011). Molecular library design using multi-objective optimization methods. In Chemical library design (pp. 53–69). Springer.

    Chapter  Google Scholar 

  • Niu, B., et al. (2016). Protein-structure-guided discovery of functional mutations across 19 cancer types. Nature Genetics, 48(8), 827–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwayama, S. (2006). Proteomics in medicinal chemistry. Mini Reviews in Medicinal Chemistry, 6(2), 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Nutan, P., & Patel, D. (2012). Drug discovery. Journal of Antivirals and Antiretrovirals, 2(4), 63-68. https://doi.org/10.4172/jaa.1000025

  • O’Hara, P. J., et al. (1993). The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron, 11(1), 41–52.

    Article  PubMed  Google Scholar 

  • Ohlstein, E. H., Ruffolo, R. R., Jr., & Elliott, J. D. (2000). Drug discovery in the next millennium. Annual Review of Pharmacology and Toxicology, 40(1), 177–191.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, S. S., Cara, L. C. L., & Salvador, M. K. (2012). In silico pharmacology for a multidisciplinary drug discovery process. Drug Metabolism and Drug Interactions, 27(4), 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Overington, J., et al. (1990). Tertiary structural constraints on protein evolutionary diversity: Templates, key residues and structure prediction. Proceedings of the Royal Society of London, Series B: Biological Sciences, 241(1301), 132–145.

    Article  CAS  Google Scholar 

  • Overington, J., et al. (1992). Environment-specific amino acid substitution tables: Tertiary templates and prediction of protein folds. Protein Science, 1(2), 216–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996.

    Article  CAS  PubMed  Google Scholar 

  • Payne, D. J., et al. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery, 6(1), 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Pearl, L. H., & Taylor, W. R. (1987). A structural model for the retroviral proteases. Nature, 329(6137), 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Phoebe Chen, Y.-P., & Chen, F. (2008). Identifying targets for drug discovery using bioinformatics. Expert Opinion on Therapeutic Targets, 12(4), 383–389.

    Article  CAS  Google Scholar 

  • Pina, A. S., Hussain, A., & Roque, A. C. A. (2010). An historical overview of drug discovery. In Ligand-macromolecular interactions in drug discovery (pp. 3–12). Springer.

    Chapter  Google Scholar 

  • Poduri, R. (2021). Historical perspective of drug discovery and development. In Drug discovery and development (pp. 1–10). Springer.

    Chapter  Google Scholar 

  • Prakash, N., & Devangi, P. (2010). Drug discovery. Journal of Antivirals and Antiretrovirals, 2(4), 063–068.

    Article  CAS  Google Scholar 

  • Prieto-Martínez, F. D., et al. (2019). Computational drug design methods—Current and future perspectives. In In silico drug design (pp. 19–44). Elsevier.

    Chapter  Google Scholar 

  • Pudipeddi, M., et al. (2019). Integrated drug product development: From lead candidate selection to life-cycle management. In Drug discovery and development (pp. 223–261). CRC Press.

    Chapter  Google Scholar 

  • Rasheed, A., & Farhat, R. (2013). Combinatorial chemistry: A review. International Journal of Pharmaceutical Sciences and Research, 4(7), 2502.

    Google Scholar 

  • Ratti, E., & Trist, D. (2001). Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure and Applied Chemistry, 73(1), 67–75.

    Article  CAS  Google Scholar 

  • Rey-Ladino, J., et al. (2011). Natural products and the search for novel vaccine adjuvants. Vaccine, 29(38), 6464–6471.

    Article  CAS  PubMed  Google Scholar 

  • Rice, D. W., & Eisenberg, D. (1997). A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. Journal of Molecular Biology, 267(4), 1026–1038.

    Article  CAS  PubMed  Google Scholar 

  • Rose, S., & Stevens, A. (2003). Computational design strategies for combinatorial libraries. Current Opinion in Chemical Biology, 7(3), 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Scapin, G. (2006). Structural biology and drug discovery. Current Pharmaceutical Design, 12(17), 2087–2097.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, G., & Schüller, A. (2010). Adaptive combinatorial design of focused compound libraries. In Ligand-macromolecular interactions in drug discovery (pp. 135–147). Springer.

    Chapter  Google Scholar 

  • Seneci, P., et al. (2014). The effects of combinatorial chemistry and technologies on drug discovery and biotechnology: A mini review. Nova Biotechnologica et Chimica. https://doi.org/10.1515/nbec-2015-0001

  • Shepherd, C. A., Hopkins, A. L., & Navratilova, I. (2014). Fragment screening by SPR and advanced application to GPCRs. Progress in Biophysics and Molecular Biology, 116(2–3), 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Sim, S., Kacevska, M., & Ingelman-Sundberg, M. (2013). Pharmacogenomics of drug-metabolizing enzymes: A recent update on clinical implications and endogenous effects. The Pharmacogenomics Journal, 13(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Singh, J., et al. (2011). The resurgence of covalent drugs. Nature Reviews Drug Discovery, 10(4), 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Sleno, L., & Emili, A. (2008). Proteomic methods for drug target discovery. Current Opinion in Chemical Biology, 12(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228(4705), 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  • Southan, C. (2004). Has the yo-yo stopped? An assessment of human protein-coding gene number. Proteomics, 4(6), 1712–1726.

    Article  CAS  PubMed  Google Scholar 

  • Stefanovich, V. (1980). The role of biochemistry in drug research. Current Medical Research and Opinion, 6(7), 488–499.

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam, M., et al. (2008). Selection of relevant species. In Preclinical safety evaluation of biopharmaceuticals (pp. 181–205). Wiely.

    Google Scholar 

  • Sutanto, F., Konstantinidou, M., & Dömling, A. (2020). Covalent inhibitors: A rational approach to drug discovery. RSC Medicinal Chemistry, 11(8), 876–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taboureau, O., et al. (2012). Established and emerging trends in computational drug discovery in the structural genomics era. Chemistry & Biology, 19(1), 29–41.

    Article  CAS  Google Scholar 

  • Thomas, G. (2011). Medicinal chemistry: An introduction. Wiley.

    Google Scholar 

  • Tuley, A., & Fast, W. (2018). The taxonomy of covalent inhibitors. Biochemistry, 57(24), 3326–3337.

    Article  CAS  PubMed  Google Scholar 

  • Van Voorhis, W. C., et al. (2009). The role of medical structural genomics in discovering new drugs for infectious diseases. PLoS Computational Biology, 5(10), e1000530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veenstra, T. D. (2006). Proteomic approaches in drug discovery. Drug Discovery Today: Technologies, 3(4), 433–440.

    Article  Google Scholar 

  • Velázquez-Campoy, A., et al. (2004). Isothermal titration calorimetry. Current Protocols in Cell Biology, 23(1), 17.8.1–17.8.24.

    Article  Google Scholar 

  • Wasinger, V. C., et al. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16(1), 1090–1094.

    Article  CAS  PubMed  Google Scholar 

  • Whittaker, P. A. (2003). What is the relevance of bioinformatics to pharmacology? Trends in Pharmacological Sciences, 24(8), 434–439.

    Article  CAS  PubMed  Google Scholar 

  • Wirth, M., et al. (2013). SwissBioisostere: A database of molecular replacements for ligand design. Nucleic Acids Research, 41(D1), D1137–D1143.

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer, A., & Erickson, J. W. (1993). Structure-based inhibitors of HIV-1 protease. Annual Review of Biochemistry, 62(1), 543–585.

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer, A., & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annual Review of Biophysics and Biomolecular Structure, 27(1), 249–284.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. O., et al. (2011). VnD: A structure-centric database of disease-related SNPs and drugs. Nucleic Acids Research, 39(suppl_1), D939–D944.

    Article  CAS  PubMed  Google Scholar 

  • Yarbrough, G. G., et al. (1993). Screening microbial metabolites for new drugs-theoretical and practical issues. The Journal of Antibiotics, 46(4), 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M.-Q., & Wilkinson, B. (2007). Drug discovery beyond the ‘rule-of-five’. Current Opinion in Biotechnology, 18(6), 478–488.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., et al. (2019). Recent advances in selective and irreversible covalent ligand development and validation. Cell Chemical Biology, 26(11), 1486–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the useful suggestions from Dr. Chunpeng (Craig) Wan, Jiangxi Agricultural University, Nanchang, China.

Conflict of Interest

The authors declared no conflict of interest for the submission and publishing of this draft.

Author Contribution

MN, MD, and MR wrote the draft. MA, SUR, KN, and MFN conceptualized the study and reviewed it. MFN and KN drew the figures and graphical abstract.

Ethical Statement

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Niaz or Muhammad Farrukh Nisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisar, M. et al. (2024). Current Trends in the Development and Biochemistry of Drugs. In: Hashmi, M.Z., Saeed, A., Musharraf, S.G., Shuhong, W. (eds) Recent Advances in Industrial Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-50989-6_13

Download citation

Publish with us

Policies and ethics