Skip to main content

Non-Cryptographic Privacy Preserving Machine Learning Methods: A Review

  • Conference paper
  • First Online:
Advanced Engineering, Technology and Applications (ICAETA 2023)

Abstract

In recent years, the use of Machine Learning (ML) techniques to exploit data and produce predictive models has become widespread in decision-making and problem-solving across various fields, including healthcare, energy, retail, transportation, and many more. Generally, a well-performing ML model requires large volumes of training data. However, collecting data and using it to predict behavior poses significant challenges to the privacy of individuals and organizations, such as data breaches, loss of privacy, and corresponding financial damage. Therefore, well-designed privacy-preserving ML (PPML) methods are significantly required for many emerging applications to mitigate these problems. This paper provides a comprehensive review of non-cryptographic privacy-preserving ML along with selected methods, such as differential privacy and federated learning. This paper aims to provide a roadmap for future research directions in the PPML field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çatak, F.Ö.: Secure multi-party computation based privacy preserving extreme learning machine algorithm over vertically distributed data. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 337–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_39

    Chapter  Google Scholar 

  2. Kubat, M.: The genetic algorithm. In: An Introduction to Machine Learning, pp. 309–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63913-0_16

    Chapter  Google Scholar 

  3. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  Google Scholar 

  4. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private collaborative neural network learning. Cryptology ePrint Archive (2017)

    Google Scholar 

  5. Kotsogiannis, I., Doudalis, S., Haney, S., Machanavajjhala, A., Mehrotra, S.: One-sided differential privacy. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 493–504. IEEE (2020)

    Google Scholar 

  6. Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: efficient algorithms and tight error bounds. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 464–473. IEEE (2014)

    Google Scholar 

  7. Thakkar, V., Gordon, K.: Privacy and policy implications for big data and health information technology for patients: a historical and legal analysis. Improving Usability, Safety and Patient Outcomes with Health Information Technology, pp. 413–417 (2019)

    Google Scholar 

  8. Wang, S., et al.: Adaptive federated learning in resource constrained edge computing systems. IEEE J. Select. Areas Commun. 37(6), 1205–1221 (2019)

    Article  MathSciNet  Google Scholar 

  9. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  10. Ming Chen, Bingcheng Mao, and Tianyi Ma. Efficient and robust asynchronous federated learning with stragglers. In Submitted to International Conference on Learning Representations, 2019

    Google Scholar 

  11. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  12. Choudhury, O., et al.: Differential privacy-enabled federated learning for sensitive health data. arXiv preprint arXiv:1910.02578 (2019)

  13. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  14. Dewang, R.K., Raven, A., Mewada, A.: A machine learning-based privacy-preserving model for COVID-19 patient using differential privacy. In: 2021 19th OITS International Conference on Information Technology (OCIT), pp. 90–95. IEEE (2021)

    Google Scholar 

  15. Naseri, M., Hayes, J., De Cristofaro, E.: Local and central differential privacy for robustness and privacy in federated learning. arXiv preprint arXiv:2009.03561 (2020)

  16. Gu, X., Li, M., Xiong, L.: PRECAD: privacy-preserving and robust federated learning via crypto-aided differential privacy. arXiv preprint arXiv:2110.11578 (2021)

  17. Wang, X. S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-wide, privacy-preserving similar patient query based on private edit distance. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 492–503 (2015)

    Google Scholar 

  18. Chamikara, M.A.P., Bertok, P., Khalil, I., Liu, D., Camtepe, S.: Privacy preserving distributed machine learning with federated learning. Comput. Commun. 171, 112–125 (2021)

    Article  Google Scholar 

  19. Jiang, Y., Li, Y., Zhou, Y., Zheng, X.: Sybil attacks and defense on differential privacy based federated learning. In: 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 355–362. IEEE (2021)

    Google Scholar 

  20. Zhao, Y., et al.: Local differential privacy-based federated learning for internet of things. IEEE Internet Things J. 8(11), 8836–8853 (2020)

    Article  Google Scholar 

  21. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthcare Inform. Res. 5(1), 1–19 (2020)

    Article  Google Scholar 

  22. Kumar, R., et al.: Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sens. J. 21(14), 16301–16314 (2021)

    Article  Google Scholar 

  23. Dinh, C.T., et al.: Federated learning over wireless networks: convergence analysis and resource allocation. IEEE/ACM Trans. Netw. 29(1), 398–409 (2020)

    Google Scholar 

  24. Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Poor, H.V.: Federated learning for internet of things: a comprehensive survey. IEEE Commun. Surv. Tutor. (2021)

    Google Scholar 

  25. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 112, 59–67 (2018)

    Article  Google Scholar 

  26. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 13(4), 94 (2021)

    Article  Google Scholar 

  27. Hamm, J., Cao, Y., Belkin, M.: Learning privately from multiparty data. In: International Conference on Machine Learning, pp. 555–563. PMLR (2016)

    Google Scholar 

  28. Tran, A.-T., Luong, T.-D., Karnjana, J., Huynh, V.-N.: An efficient approach for privacy preserving decentralized deep learning models based on secure multi-party computation. Neurocomputing 422, 245–262 (2021)

    Article  Google Scholar 

  29. Reich, D., et al. Privacy-preserving classification of personal text messages with secure multi-party computation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  30. Ma, X., Zhang, F., Chen, X., Shen, J.: Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)

    Article  Google Scholar 

  31. Liu, B., Yan, B., Zhou, Y., Yang, Y., Zhang, Y.: Experiments of federated learning for COVID-19 chest x-ray images. arXiv preprint arXiv:2007.05592 (2020)

  32. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3) (2011)

    Google Scholar 

  33. Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. In: Conference on Learning Theory, pp. 25–1. JMLR Workshop and Conference Proceedings (2012)

    Google Scholar 

  34. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: 2013 IEEE Global Conference on Signal and Information Processing, pp. 245–248. IEEE (2013)

    Google Scholar 

  35. Wu, X., Kumar, A., Chaudhuri, K., Jha, S., Naughton, J.F.: Differentially private stochastic gradient descent for in-RDBMS analytics. CoRR, abs/1606.04722 (2016)

    Google Scholar 

  36. Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L.: Splitfed: when federated learning meets split learning. arXiv preprint arXiv:2004.12088 (2020)

  37. Zhang, T., He, Z., Lee, R.B.: Privacy-preserving machine learning through data obfuscation. arXiv preprint arXiv:1807.01860 (2018)

  38. Rauschmayr, N., et al.: Amazon sagemaker debugger: a system for real-time insights into machine learning model training. Proc. Mach. Learn. Syst. 3, 770–782 (2021)

    Google Scholar 

  39. Pliuhin, V., Pan, M., Yesina, V., Sukhonos, M.: Using azure machine learning cloud technology for electric machines optimization. In: 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S &T), pp. 55–58. IEEE (2018)

    Google Scholar 

  40. Kuzlo, I., Strielkina, A., Tetskyi, A., Uzun, D.: Selecting cloud service for healthcare applications: from hardware to cloud across machine learning. In: PhD@ ICTERI, pp. 26–34 (2018)

    Google Scholar 

  41. Owusu-Agyemeng, K., Qin, Z., Xiong, H., Liu, Y., Zhuang, T., Qin, Z.: MSDP: multi-scheme privacy-preserving deep learning via differential privacy. Pers. Ubiquit. Comput., 1–13 (2021)

    Google Scholar 

  42. Zhang, N., Peng Yang, J., Ren, D.C., Li, Yu., Shen, X.: Synergy of big data and 5G wireless networks: opportunities, approaches, and challenges. IEEE Wirel. Commun. 25(1), 12–18 (2018)

    Article  Google Scholar 

  43. Zhang, N., et al.: Software defined networking enabled wireless network virtualization: challenges and solutions. IEEE Netw. 31(5), 42–49 (2017)

    Article  Google Scholar 

  44. Chen, H., Guo, B., Zhiwen, Yu., Chen, L., Ma, X.: A generic framework for constraint-driven data selection in mobile crowd photographing. IEEE Internet Things J. 4(1), 284–296 (2017)

    Google Scholar 

  45. Qin, Z., et al.: Learning-aided user identification using smartphone sensors for smart homes. IEEE Internet Things J. 6(5), 7760–7772 (2019)

    Article  Google Scholar 

  46. Qin, Z., Wang, Y., Cheng, H., Zhou, Y., Sheng, Z., Leung, V.C.: Demographic information prediction: a portrait of smartphone application users. IEEE Trans. Emerg. Topics Comput. 6(3), 432–444 (2016)

    Article  Google Scholar 

  47. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network training. Cryptology ePrint Archive (2018)

    Google Scholar 

  48. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)

    Google Scholar 

  49. Yin, C., Xi, J., Sun, R., Wang, J.: Location privacy protection based on differential privacy strategy for big data in industrial internet of things. IEEE Trans. Industr. Inf. 14(8), 3628–3636 (2017)

    Article  Google Scholar 

  50. Ali, S., Irfan, M.M., Bomai, A., Zhao, C.: Towards privacy-preserving deep learning: opportunities and challenges. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 673–682. IEEE (2020)

    Google Scholar 

  51. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy is it to break privacy in federated learning? In: Advances in Neural Information Processing Systems, vol. 33, 16937–16947 (2020)

    Google Scholar 

  52. Yin, X., Zhu, Y., Jiankun, H.: A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput. Surv. (CSUR) 54(6), 1–36 (2021)

    Article  Google Scholar 

  53. Li, Q., Wen, Z., He, B.: Practical federated gradient boosting decision trees. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4642–4649 (2020)

    Google Scholar 

  54. Hao, Y., Yang, S., Zhu, S.: Parallel restarted SGD with faster convergence and less communication: demystifying why model averaging works for deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 5693–5700 (2019)

    Google Scholar 

  55. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3557–3568 (2020)

    Google Scholar 

  56. Çatak, F.Ö., Mustacoglu, A.F.: CPP-ELM: cryptographically privacy-preserving extreme learning machine for cloud systems. Int. J. Comput. Intell. Syst. 11, 33–44 (2018)

    Article  Google Scholar 

  57. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Comput. Surv. (CSUR) 51(3), 1–38 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kuzlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Şahinbaş, K., Catak, F.O., Kuzlu, M., Tabassum, M., Sarp, S. (2024). Non-Cryptographic Privacy Preserving Machine Learning Methods: A Review. In: Ortis, A., Hameed, A.A., Jamil, A. (eds) Advanced Engineering, Technology and Applications. ICAETA 2023. Communications in Computer and Information Science, vol 1983. Springer, Cham. https://doi.org/10.1007/978-3-031-50920-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50920-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50919-3

  • Online ISBN: 978-3-031-50920-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics