Skip to main content

Hopf Bifurcation Analysis of the BVAM Model for Electrocardiogram

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics, Volume III (ICNDA 2023)

Part of the book series: NODYCON Conference Proceedings Series ((NCPS))

Included in the following conference series:

  • 65 Accesses

Abstract

Bio-electric activity of the heart is modeled by the Barrio–Varea–Aragon–Maini (BVAM) model that covers normal rhythm and several arrhythmia that lie in the chaotic region and exhibits several bifurcations. In this chapter, we develop the analytic solution of the BVAM model and identify the Hopf bifurcation. The center manifold reduction is applied to the governing equations to reduce the order of the system. The method of multiple scales is employed to develop the normal form of the Hopf bifurcation for the center manifolds. These are then transformed back into original coordinates where the analytical solution is compared with the numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha, S.(auth.), In, V., Longhini, P., Palacios, A., Ditto, W.L., Murali, K. (eds.): Applications of Nonlinear Dynamics: Model and Design of Complex Systems, 1st edn. In: Understanding Complex Systems. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  2. Matsushita, H., Miyata, T., Christiansen, L.E., Lehn-Schioler, T., Mosekilde, E.: Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed. In: Proceedings of the 41st SICE Annual Conference. SICE 2002., vol. 2, pp. 695–700 (2002)

    Google Scholar 

  3. Quiroz-Juárez, M.A., Jiménez-Ramírez, O., Vázquez-Medina, R., Breña-Medina, V., Aragón, J.L., Barrio, R.A.: Generation of ECG signals from a reaction-diffusion model spatially discretized. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  4. Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392(6671), 75–78 (1998)

    Article  Google Scholar 

  5. Nayfeh, A.H.: Introduction to Perturbation Techniques. John Wiley & Sons, New York (2011)

    Google Scholar 

  6. Keener, J.P., Sneyd, J.: Mathematical Physiology, vol. 1. Springer, New York (1998)

    Book  Google Scholar 

  7. Qu, Z., Hu, G., Garfinkel, A., Weiss, J.N.: Nonlinear and stochastic dynamics in the heart. Phys. Rep. 543(2), 61–162 (2014)

    Article  MathSciNet  Google Scholar 

  8. Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange axiom a attractors near quasi periodic flows on T\({ }^m\), \(m \geqq 3\). Commun. Math. Phys. 64(1), 35–40 (1978)

    Google Scholar 

  9. Quiroz-Juarez, M.A., Vázquez-Medina, R., Ryzhii, E., Ryzhii, M., Aragón, J.L.: Quasiperiodicity route to chaos in cardiac conduction model. Commun. Nonlinear Sci. Numer. Simul. 42, 370–378 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ryzhii, E., Ryzhii, M.: A heterogeneous coupled oscillator model for simulation of ECG signals. Comput. Methods Prog. Biomed. 117(1), 40–49 (2014)

    Article  Google Scholar 

  11. Barrio, R.A., Varea, C., Aragón, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61(3), 483–505 (1999)

    Article  Google Scholar 

  12. Toole, G., Hurdal, M.K.: Growth in a Turing model of cortical folding. Biomath 1(1), ID–1209252 (2012)

    Google Scholar 

  13. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. John Wiley & Sons, New York (2008)

    Google Scholar 

  14. Cole, J.D.: Perturbation Methods (Ali Hasan Nayfeh). Wiley (1976); WILEY-VCH Verlag GmbH & CO. KGaA, Weinheim (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Naseer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naseer, A., Akhtar, I., Hajj, M.R. (2024). Hopf Bifurcation Analysis of the BVAM Model for Electrocardiogram. In: Lacarbonara, W. (eds) Advances in Nonlinear Dynamics, Volume III. ICNDA 2023. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50635-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50635-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50634-5

  • Online ISBN: 978-3-031-50635-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics