Skip to main content

Interpolation and Quantifiers in Ortholattices

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2024)

Abstract

We study quantifiers and interpolation properties in orthologic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based proof system for quantified orthologic, which we prove sound and complete for the class of all complete ortholattices. We show that orthologic does not admit quantifier elimination in general. Despite that, we show that interpolants always exist in orthologic. We give an algorithm to compute interpolants efficiently. We expect our result to be useful to quickly establish unreachability as a component of verification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/sankalpgambhir/ol-interpolation.

References

  1. Bell, J.L.: Orthologic, Forcing, and The Manifestation of Attributes. In: Chong, C.T., Wicks, M.J. (eds.) Studies in Logic and the Foundations of Mathematics. Studies in Logic and the Foundations of Mathematics, vol. 111, pp. 13–36. Elsevier, Singapore (1983). https://doi.org/10.1016/S0049-237X(08)70953-4

  2. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936). https://doi.org/10.2307/1968621

    Article  MathSciNet  Google Scholar 

  3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  4. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_26

    Chapter  Google Scholar 

  5. Bruns, G.: Free Ortholattices. Can. J. Math. 28(5), 977–985 (1976). https://doi.org/10.4153/CJM-1976-095-6

    Article  MathSciNet  Google Scholar 

  6. Brzozowski, J.: De Morgan bisemilattices. In: Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000), pp. 173–178 (2000). https://doi.org/10.1109/ISMVL.2000.848616

  7. Chajda, I., Halaš, R.: An implication in orthologic. Int. J. Theor. Phys. 44(7), 735–744 (2005). https://doi.org/10.1007/s10773-005-7051-1

    Article  MathSciNet  Google Scholar 

  8. Cook, S., Morioka, T.: Quantified propositional calculus and a second-order theory for NC1. Arch. Math. Logic 44(6), 711–749 (2005). https://doi.org/10.1007/s00153-005-0282-2

    Article  MathSciNet  Google Scholar 

  9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252. POPL ’77, Association for Computing Machinery, New York, NY, USA (1977). https://doi.org/10.1145/512950.512973

  10. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957). https://doi.org/10.2307/2963594

    Article  MathSciNet  Google Scholar 

  11. Dudenhefner, A., Rehof, J.: A Simpler Undecidability Proof for System F Inhabitation. In: TYPES, p. 11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany (2019). https://doi.org/10.4230/LIPICS.TYPES.2018.2

  12. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39, 176–210 (1935)

    Article  MathSciNet  Google Scholar 

  13. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, New York, USA (1989)

    Google Scholar 

  14. Guilloud, S., Bucev, M., Milovančević, D., Kunčak, V.: Formula Normalizations in Verification. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 398–422. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-37709-9_19

    Chapter  Google Scholar 

  15. Guilloud, S., Gambhir, S., Kunčak, V.: LISA - A modern proof system. In: Naumowicz, A., Thiemann, R. (eds.) 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 268, pp. 17:1–17:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.ITP.2023.17, https://drops.dagstuhl.de/opus/volltexte/2023/18392

  16. Guilloud, S., Kunčak, V.: Orthologic with axioms. Proc. ACM Program. Lang. 8(POPL) (2024)

    Google Scholar 

  17. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14–16, 2004, pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

  18. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16–19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6173, pp. 188–195. Springer (2010). https://doi.org/10.1007/978-3-642-14203-1_16

  19. Hojjat, H., Rummer, P.: The ELDARICA Horn Solver. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp. 1–7 (2018). https://doi.org/10.23919/FMCAD.2018.8603013

  20. Holliday, W.H.: A fundamental non-classical logic. Logics 1(1), 36–79 (2023). https://doi.org/10.3390/logics1010004

    Article  MathSciNet  Google Scholar 

  21. Holliday, W.H., Mandelkern, M.: The Orthologic of Epistemic Modals (2022). https://doi.org/10.48550/ARXIV.2203.02872

  22. Kalmbach, G.: Orthomodular Lattices. Academic Press Inc, London; New York (1983)

    Google Scholar 

  23. Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. In: Chechik, M., Wirsing, M. (eds.) Fundamental Approaches to Software Engineering, pp. 470–485. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0_33

  24. Kozen, D.: Complexity of Boolean algebras. Theor. Comput. Sci. 10, 221–247 (1980). https://doi.org/10.1016/0304-3975(80)90048-1

    Article  MathSciNet  Google Scholar 

  25. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 573–578. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_45

    Chapter  Google Scholar 

  26. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1_14

    Chapter  Google Scholar 

  27. de Lavalette, G.R.R.: Interpolation in fragments of intuitionistic propositional logic. J. Symbolic Logic 54(4), 1419–1430 (1989). https://doi.org/10.2307/2274823

    Article  MathSciNet  Google Scholar 

  28. MacNeille, H.M.: Partially ordered sets. Trans. Am. Math. Soc. 42(3), 416–460 (1937). https://doi.org/10.1090/S0002-9947-1937-1501929-X

    Article  MathSciNet  Google Scholar 

  29. Madsen, M., Yee, M.H., Lhoták, O.: From Datalog to flix: a declarative language for fixed points on lattices. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 194–208 (2016). https://doi.org/10.1145/2908080.2908096

  30. McMillan, K., Rybalchenko, A.: Solving Constrained Horn Clauses using Interpolation. Tech. rep, Microsoft Research (2013)

    Google Scholar 

  31. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1

    Chapter  Google Scholar 

  32. McMillan, K.L.: Interpolants and symbolic model checking. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 89–90. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1_6

    Chapter  Google Scholar 

  33. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_31

    Chapter  Google Scholar 

  34. McMillan, K.L.: Interpolation and model checking. In: Handbook of Model Checking, pp. 421–446. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_14

    Chapter  Google Scholar 

  35. Meinander, A.: A solution of the uniform word problem for ortholattices. Math. Struct. Comput. Sci. 20(4), 625–638 (2010). https://doi.org/10.1017/S0960129510000125

    Article  MathSciNet  Google Scholar 

  36. Miyazaki, Y.: The super-amalgamation property of the variety of ortholattices. Reports Math. Log. 33, 45–63 (1999)

    MathSciNet  Google Scholar 

  37. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Berlin Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

  38. Pudlák, P.: The lengths of proofs. In: Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 547–637. Elsevier (1998). https://doi.org/10.1016/S0049-237X(98)80023-2

  39. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Computer Aided Verification (CAV) (2013)

    Google Scholar 

  40. Schulte Mönting, J.: Cut elimination and word problems for varieties of lattices. Algebra Univers. 12(1), 290–321 (1981). https://doi.org/10.1007/BF02483891

    Article  MathSciNet  Google Scholar 

  41. Schütte, K.: Der Interpolationssatz der intuitionistischen Prädikatenlogik. Math. Ann. 148(3), 192–200 (1962). https://doi.org/10.1007/BF01470747

    Article  MathSciNet  Google Scholar 

  42. Sørensen, M., Urzyczyn, P.: Lectures on the curry-howard isomorphism. Stud. Logic Found. Math. 149 (2010). https://doi.org/10.1016/S0049-237X(06)80005-4

  43. Urzyczyn, P.: Inhabitation in typed lambda-calculi (a syntactic approach). In: de Groote, P., Roger Hindley, J. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 373–389. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62688-3_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Guilloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guilloud, S., Gambhir, S., Kunčak, V. (2024). Interpolation and Quantifiers in Ortholattices. In: Dimitrova, R., Lahav, O., Wolff, S. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2024. Lecture Notes in Computer Science, vol 14499. Springer, Cham. https://doi.org/10.1007/978-3-031-50524-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50524-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50523-2

  • Online ISBN: 978-3-031-50524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics