Skip to main content

Introduction Chapter for the Book “Frontier Studies in Soil Science”

  • Chapter
  • First Online:
Frontier Studies in Soil Science

Abstract

In this introductory chapter the authors show their views on what they consider current and future fundamental issues to advance knowledge and research in Soil Science. Each of the authors gives responses to a question posed by the scientific editor of the book. Furthermore, additional data is included to show a picture corresponding to the current situation of the theme, as per different scientific searching tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed A, He P, He P, Wu Y, He Y, Munir S (2023) Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environ Int 173:107819. https://doi.org/10.1016/j.envint.2023.107819

    Article  Google Scholar 

  2. Amundson R, Berhe A, Hopmans J, Olson C, Sztein AE, Sparks D (2015) Soil and human security in the 21st century. Science 348:6235. https://doi.org/10.1126/science.1261071

    Article  Google Scholar 

  3. Añó Vidal C, Sánchez Díaz J, Carbó Valverde E (2022) Efectos de los incendios en los suelos forestales de la Comunidad Valenciana. Revisión bibliográfica. Cuaternario y Geomorfología 36(1–2):53–75. https://doi.org/10.17735/cyg.v36i1-2.92407

  4. Baldrian P (2019) The known and the unknown in soil microbial ecology: minireview. FEMS Microbial Ecol 95:fiz005. http://orcid.org/0000-0002-8983-2721

  5. Barget RD, Caruso T (2020) Soil microbial communities responses to climate change: resistance, resilience and transitions to alternative states. Philos Trans R Soc B 375:20190112. https://doi.org/10.1098/rstb.2019.0112

    Article  Google Scholar 

  6. Barreiro A, Fox A, Jongen M, Melo J, Musyoki M, Vieira A, Zimmermann J, Carlsson G, Cruz C, Lüscher A, Rasche F, Silva L, Widmer F, Dimitrova Martensson LM (2022) Soil bacteria respond to regional edapho-climatic conditions while soil fungi respond to management intensity in grasslands along a European transect. Appl Soil Ecol 170:104264. https://doi.org/10.1016/j.apsoil.2021.104264

    Article  Google Scholar 

  7. Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B (2022) A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol. https://doi.org/10.3389/fmicb.2022.938481

    Article  Google Scholar 

  8. Borrelli P, Alewell C, Alvarez P, Anache JAA, Baartman J, Ballabio C et al (2021) Soil erosion modelling: a global review and statistical analysis. Sci Total Environ 780:146494. https://doi.org/10.1016/j.scitotenv.2021.146494

  9. Boxall A (2009) The handbook of environmental chemistry, vol XIV, Part 2P, Transformation products of synthetic chemicals in the environment. Springer, Berlin, p 249. https://doi.org/10.1007/978-3-540-88273-2

  10. Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) Peer reviewed: when synthetic chemicals degrade in the environment. Environ Sci Technol 38(19):368A–375A. https://doi.org/10.1021/es040624v

    Article  Google Scholar 

  11. Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost J (2015) The interdisciplinary nature of soil. Soil 1:117–129. https://doi.org/10.5194/soil-1-117-2015

    Article  Google Scholar 

  12. Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 740:140017. https://doi.org/10.1016/j.scitotenv.2020.140017

    Article  Google Scholar 

  13. Büks F, Kaupenjohann M (2020) Global concentrations of microplastics in soils—a review. Soil 6:649–662. https://doi.org/10.5194/soil-6-649-2020

    Article  Google Scholar 

  14. Clark RD (2018) Predicting mammalian metabolism and toxicity of pesticides in silico. Pest Manag Sci 74(9):1992–2003. https://doi.org/10.1002/ps.4935

    Article  Google Scholar 

  15. Collins L, Clarke H, Clarke MF, McColl Gausden SC, Nolan RH, Penman T, Bradstock R, Varner M (2022) Warmer and drier conditions have increased the potential for large and severe fire seasons across South-Eastern Australia. Glob Ecol Biogeogr 31:1933. https://doi.org/10.1111/geb.13514

    Article  Google Scholar 

  16. Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol 10:338. https://doi.org/10.3389/fmicb.2019.00338

    Article  Google Scholar 

  17. Doerr SH, Santín C, Mataix-Solera J (2022) Fire effects on soil. Ref Modul Earth Syst Environ Sci. https://doi.org/10.1016/B978-0-12-822974-3.00106-3

  18. Duchowicz PR, Aranda JF, Bacelo DE, Fioressi SE (2020) QSPR study of the Henry’s law constant for heterogeneous compounds. Chem Eng Res Des 154:115–121. https://doi.org/10.1016/j.cherd.2019.12.009

    Article  Google Scholar 

  19. EFSA (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J 7(3):958. https://doi.org/10.2903/j.efsa.2009.958

    Article  Google Scholar 

  20. EFSA (2014) EFSA guidance document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 12(5):3662. https://doi.org/10.2903/j.efsa.2014.3662

    Article  Google Scholar 

  21. EFSA (2017) EFSA guidance document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 15(10):e04982. https://doi.org/10.2903/j.efsa.2017.4982

    Article  Google Scholar 

  22. Evans DL, Janes-Bassett V, Borrelli P, Chenu C, Ferreira CSS, Griffiths RI, Kalantari Z, Keesstra S, Lal R, Panagos P, Robinson DA, Seifollahi-Aghmiuni S, Smith P, Steenhuis TS, Thomas A, Visser SM (2022) Sustainable futures over the next decade are rooted in soil science. Eur J Soil Sci 73(1):e13145. https://doi.org/10.1111/ejss.13145

    Article  Google Scholar 

  23. FAO (2021) FAO soil portal. https://www.fao.org/soils-portal/soildegradation-restoration

  24. Fierer N, Wood SA, Bueno de Mesquita CP (2021) How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem 153:108111. https://doi.org/10.1016/j.soilbio.2020.108111

    Article  Google Scholar 

  25. Friedrichsen CN, Mizuta K, Wulfhorst JD (2022) Advancing the intersection of soil and well-being systems science. Soil Secur 6:100036. https://doi.org/10.1016/j.soisec.2022.100036

    Article  Google Scholar 

  26. García-Carmona M, Arcenegui V, García-Orenes F, Mataix-Solera J (2023) The recovery of soils after post-fire management: the role of biocrusts and soil microbial communities. Span J Soil Sci 13:11388. https://doi.org/10.3389/sjss.2023.11388

    Article  Google Scholar 

  27. Gotsmy M, Escalona Y, Oostenbrink C, Petrov D (2021) Exploring the structure and dynamics of proteins in soil organic matter. Proteins: Struct Funct Bioinform 89(8):925–936. https://doi.org/10.1002/prot.26070

  28. Gregory PJ, George TS, Paterson E (2022) New methods for new questions about rhizosphere/plant root interactions. Plant Soil 476(1–2):699–712. https://doi.org/10.1007/s11104-022-05437-x

    Article  Google Scholar 

  29. Hartemink AE, McBratney A (2008) A soil science renaissance. Geoderma 148(2):123–129. https://doi.org/10.1016/j.geoderma.2008.10.006

    Article  Google Scholar 

  30. Humphries M (2010) Rare earth elements: the global supply chain. CRS-Report for Congress-4137, Diane Publishing

    Google Scholar 

  31. Karlen DL, Veum KS, Sudduth KA, Obrycki JF, Nunes MR (2019) Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res 195:104365. https://doi.org/10.1016/j.still.2019.104365

    Article  Google Scholar 

  32. Kumar P, Singh A, Rajput V, Singh Yadav AK, Kumar P, Singh AK, Minkina T (2022) Chapter 36—Role of artificial intelligence, sensor technology, big data in agriculture: next-generation farming. In: Sharma P, Yadav D, Kumar Gaur R (eds) Bioinformatics in agriculture, pp 625–639. https://doi.org/10.1016/B978-0-323-89778-5.00035-0

  33. Kumara TM, Pal S, Chand P, Kandpal A (2023) Carbon sequestration potential of sustainable agricultural practices to mitigate climate change in Indian agriculture: a meta-analysis. Sustain Prod Consum 35:697. https://doi.org/10.1016/j.spc.2022.12.015

    Article  Google Scholar 

  34. Lal R, Bouma J, Brevik EC, Dawson LA, Field DJ, Glaser B, Hatano R, Hartemink AE, Kosaki T, Lascelles B, Monger CH, Muggler CC, Ndzana GM, Norra S, Pan X, Paradelo R, Reyes-Sánchez LB, Sandén T, Singh BR, Spiegel H, Yanai J, Zhang J (2021) Soils and sustainable development goals of the United Nations: an International Union of Soil Sciences perspective. Geoderma Reg 25:e00398. https://doi.org/10.1016/j.geodrs.2021.e00398

    Article  Google Scholar 

  35. Liu Q, Cheng L, Nian H, Jin J, Lian T (2023) Linking plant functional genes to rhizosphere microbes: a review. Plant Biotechnol J 21:902–917. https://doi.org/10.1111/pbi.13950

    Article  Google Scholar 

  36. Loiseau C, Sorci G (2022) Can microplastics facilitate the emergence of infectious diseases? Sci Total Environ 823:153694. https://doi.org/10.1016/j.scitotenv.2022.153694

    Article  Google Scholar 

  37. Maqsood T, Dai J, Zhang Y, Guang M, Li B (2021) Pyrolysis of plastic species: a review of resources and products. J Anal Appl Pyrol 159:105295. https://doi.org/10.1016/j.jaap.2021.105295

    Article  Google Scholar 

  38. Mataix-Solera J, Arellano EC, Jaña JE, Olivares L, Guardiola J, Arcenegui V, García-Carmona M, García-Franco N, Valenzuela P (2021) Soil vulnerability indicators to degradation by wildfires in Torres del Paine National Park (Patagonia, Chile). Span J Soil Sci 11:10008. https://doi.org/10.3389/sjss.2021.10008

    Article  Google Scholar 

  39. Muhammad S, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168. https://doi.org/10.1146/annurev-ecolsys-110617-062605

    Article  Google Scholar 

  40. Núñez-Delgado A, Otero-Pérez XL, Álvarez-Rodríguez E (2023) Editorial: current research on soil science and related aspects of environmental sciences in Galicia. Span J Soil Sci 13.https://doi.org/10.3389/sjss.2023.11485

  41. Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Craig P, de Jong F, Manachini B, Sousa P, Swarowsky K, Auteri D, Arena M, Rob S (2017) Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 15(2):e04690. https://doi.org/10.2903/j.efsa.2017.4690

    Article  Google Scholar 

  42. Paul K, Chatterjee SS, Pai P, Varshney AK, Juikar SJ, Prasad V, Bhadra B, Dasgupta S (2022) Viable smart sensors and their application in data driven agriculture. Comput Electron Agric 198:107096. https://doi.org/10.1016/j.compag.2022.107096

    Article  Google Scholar 

  43. Pereira P, Bogunovic I, Muñoz-Rojas M, Brevik EC (2018) Soil ecosystem services, sustainability, valuation and management. Curr Opin Environ Sci Health 5:7–13. https://doi.org/10.1016/j.coesh.2017.12.003

    Article  Google Scholar 

  44. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365. https://doi.org/10.1016/j.envint.2019.01.067

    Article  Google Scholar 

  45. Ramola GC, Sahu L, Rathod D, Kukreti A (2023) Soil degradation and deterioration: causes, effects and case studies. In: Uniyal A, Sharma I, Tiwari I (eds) Soil restoration: assessment and reclamation, pp 107–123. ISBN: 978-93-94380-21-9

    Google Scholar 

  46. Raza T, Qadir MF, Khan KS, Eash NS, Yousuf M, Chatterjee S, Manzoor R, Rehman SU, Oetting JN (2023) Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J Environ Manag 344:118529. https://doi.org/10.1016/j.jenvman.2023.118529

    Article  Google Scholar 

  47. Rodrigo-Comino J, López-Vicente M, Kumar V, Rodríguez-Seijo A, Valkó O, Rojas C, Reza Pourghasemi H, Salvati L, Bakr N, Vaudour E, Brevik EC, Radziemska M, Pulido M, Di Prima S, Dondini M, de Vries W, Santos ES, Mendonça-Santos ML, Yu Y, Panagos P (2020) Soil science challenges in a new era: a transdisciplinary overview of relevant topics. Air Soil Water Res 13:1–17. https://doi.org/10.1177/1178622120977491

    Article  Google Scholar 

  48. Rodríguez-Seijo A, Soares C, Ribeiro S, Amil BF, Patinha C, Cachada A, Fidalgo F, Pereira R (2022) Nano-Fe2O3 as a tool to restore plant growth in contaminated soils—assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. J Hazard Mater 425:127999. https://doi.org/10.1016/j.jhazmat.2021.127999

    Article  Google Scholar 

  49. Roshan A, Biswas A (2023) Fire-induced geochemical changes in soil: implication for the element cycling. Sci Total Environ 868:161714. https://doi.org/10.1016/j.scitotenv.2023.161714

    Article  Google Scholar 

  50. Ryde U (2016) QM/MM calculations on proteins. In: Voth GA (ed) Methods in enzymology. Academic Press, pp 119–158. https://doi.org/10.1016/bs.mie.2016.05.014

  51. Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D (2023) Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environ Pollut 334:122222. https://doi.org/10.1016/j.envpol.2023.122222

  52. Shi T, Guo L, Chen Y, Wang W, Shi Z, Li Q, Guofen W (2018) Proximal and remote sensing techniques for mapping of soil contamination with heavy metals. Appl Spectrosc Rev 53:783. https://doi.org/10.1080/05704928.2018.1442346

    Article  Google Scholar 

  53. UNEP (2022) https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared

  54. Urionabarrenetxea E, Casás C, Garcia-Velasco N, Santos MJG, Tarazona JV, Soto M (2023) Environmental risk assessment of PPP application in European soils and potential ecosystem service losses considering impacts on non-target organisms. Ecotoxicol Environ Saf 266:115577. https://doi.org/10.1016/j.ecoenv.2023.115577

    Article  Google Scholar 

  55. Vargas-Berrones K, Bernal-Jácome L, de León-Martínez LD, Flores-Ramírez R (2020) Emerging pollutants (EPs) in Latin América: a critical review of under-studied EPs, case of study-nonylphenol. Sci Total Environ 726:138493. https://doi.org/10.1016/j.scitotenv.2020.138493

    Article  Google Scholar 

  56. Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M (2018) Pesticide byproducts formation: theoretical study of the protonation of alloxydim degradation products. Comput Theor Chem 1143:9–19. https://doi.org/10.1016/j.comptc.2018.08.006

    Article  Google Scholar 

  57. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2020) Contributions of computer-based chemical modeling technologies on the risk assessment and the environmental fate study of (nano)pesticides. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development: Volume 1: Air, water and energy resources. Springer, Singapore, pp 1–27. https://doi.org/10.1007/978-981-13-5889-0_1

  58. Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P (2022) A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. Sci Total Environ 839:156000. https://doi.org/10.1016/j.scitotenv.2022.156000

    Article  Google Scholar 

  59. Wang J, Zhen J, Weifang H, Chen S, Lizaga I, Zeraatpisheh M, Yang X (2023) Remote sensing of soil degradation: progress and perspective. Int Soil Water Conserv Res 11:429. https://doi.org/10.1016/j.iswcr.2023.03.002

    Article  Google Scholar 

  60. Wang Y, Munir U, Huang Q (2023) Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: sources, fate, and remediation. Soil Environ Health 1(1):100004. https://doi.org/10.1016/j.seh.2023.100004

    Article  Google Scholar 

  61. Yuan Z, Ali A, Ruíz-Benito P, Jucker T, Mori AS, Wnag S, Zhang X, Hao Z, Wang X, Loreau M (2020) Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environment gradient. J Ecol 108:2012–2024. https://doi.org/10.1111/1365-2745.13378

    Article  Google Scholar 

  62. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. https://doi.org/10.1021/es401288x

    Article  Google Scholar 

  63. Zheng X, Chen S, Gao L, Liu Y, Shen F, Liu H (2020) Experimental and theoretical study of kinetic and mechanism of hydroxyl radical-mediated degradation of sulfamethazine. Environ Sci Pollut Res 27(32):40504–40511. https://doi.org/10.1007/s11356-020-10072-z

    Article  Google Scholar 

Download references

Acknowledgements

Funding: This work was supported by the Spanish “Agencia Estatal de Investigación” (State Investigation Agency) [grant number PID2021-122920OB-C21].

The sponsors had not involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report, and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelino Núñez-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Núñez-Delgado, A. et al. (2024). Introduction Chapter for the Book “Frontier Studies in Soil Science”. In: Núñez-Delgado, A. (eds) Frontier Studies in Soil Science. Frontier Studies in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-031-50503-4_1

Download citation

Publish with us

Policies and ethics