Skip to main content

Akchagylian Hydrospheric Phenomenon and Its Connection with Deep Geodynamics

  • Chapter
  • First Online:
Pliocene Hydrocarbon Sedimentary Series of Azerbaijan

Abstract

Hydrospheric disturbances are one of the defining elements of the development of both the stratigraphic scale and the scale of planetary periodization during the Late Cenozoic. The most exotic in paleogeographic and sedimentation-biotic terms is the Akchagylian basin—anomalously elongated deep to the north and characterized by a typology of transition from a brackish water regime to a semi-marine and marine one. The sea transgression in the Akchagylian time reached 200 or more meters, which could not but significantly impact the accumulation of precipitation and the climatic conditions of this period. Based on the detailed stratigraphic, structural-tectonic, palebiogeographic, and paleomagnetic analyses, the boundaries and volume of the Akchagylian stage in the Eastern Paratethys region were revised. For the first time, the land-sea boundaries for this region during the period of the maximum Middle Pliocene (Akchagylian) transgression are distinguished. A clear connection is shown between the development of the Akchagylian basin with different tectonic elements. This research can be used to develop an enhanced strategy for prospecting hydrocarbon deposits in the region under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullayev, N. A., Kadirov, F. A., & Guliev, I. (2015). Subsidence history and basin-fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling and gravity modelling. Geological Society, London, Special Publications, 427(1), 175–196.

    Article  Google Scholar 

  • Ali-zade, A. A. (1961). Akchagylian of Turkmenistan (Vol. 1, 405 p.). Gosgeoltekhizdat, Moscow (in Russian).

    Google Scholar 

  • Ali-zade, A. A. (1967). Akchagylian of Turkmenistan (Vol. 2, 300 p.). Gosgeoltekhizdat, Moscow (in Russian).

    Google Scholar 

  • Alizade, A. A., Pashaly, N. V., Mamedov, A. V., Fedorov, P. V., Saradzhalinskaya, T. M., & Ibarov, T. R. (1987). Azerbaijan. In The boundary between the neogene and quaternary systems in the USSR (pp. 89–94). Academy of Science of the USSR. Nauka, Moscow (in Russian).

    Google Scholar 

  • Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2016). Geosciences in Azerbaijan. Volume I: Geology (239 p.). Springer.

    Google Scholar 

  • Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2017). Geosciences in Azerbaijan. Volume II: Economic minerals and applied geophysics (340 p.). Springer, Heidelberg.

    Google Scholar 

  • Alizade, K. A. (1954). Akchagylian stage of Azerbaijan. Acad. Sci. Azerb. SSR. Inst. of Geology. Baku, Azerbaijan, 344 p. (in Russian).

    Google Scholar 

  • Almogi-Labin, A., SimaneTov, R., Rosenfeld, A., & Debard, E. (1995). Occurrences and distribution of the foraminifer Ammonia beccari tepida (Cushman) in water bodies, recent and quaternary, of the Dead Sea rift, Israel. Marine Micropaleontology, 26, 153–159.

    Article  Google Scholar 

  • Andrussov N. I. (1902). Materials for the knowledge of the Near-Caspian Neogene. Akchagylian beds. Transactions of the Russian Geological Committee (Vol. 15, 154 p.) (in Russian).

    Google Scholar 

  • Andrussov, N. I. (1918). The relationship between the Euxine and Caspian basins in the Neogene Epoch. Izvestiya Russian Academy of Science, 8, 749–760. (in Russian).

    Google Scholar 

  • Balukhovsky, N. F. (1966). Geological cycles (169 p.). Institute of Geological Sciences of Ukrain. Academy of Science, Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Belkin, V. I., Zarkhidze, V. S., & Semenov, I. N. (1972). Stratotypic section of the Kolvinskaya suite. In Questions of stratigraphy and correlation of the Pliocene and Pleistocene deposits of the Northern and Southern Parts of the Cis-Urals. Bashkir. Branch of the USSR Acad. Sci., No. 1, Ufa, 5–8 (in Russian).

    Google Scholar 

  • Bellas, S., & Keupp, H. (2010). Contribution to the Late Neogene stratigraphy of the ancient Gortys area (southern central Crete, Greece) (pp. 579–593). Bulletin of the Geology Society of Greece.

    Google Scholar 

  • Bennison, G. M., & Wright, A. E. (1969). The geological history of the British Isles (p. 143). Geol., Univ. Birmingham, London.

    Google Scholar 

  • Buchbinder, B., & Zilberman, E. (1997). Sequence stratigraphy of Miocene-Pliocene carbonate-siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): Effects of eustasy and tectonics. Sedimentary Geology, 112, 7–32.

    Article  CAS  Google Scholar 

  • Chumakov, I. S. (1967). Pliocene and pleistocene deposits of the Nile Valley in Nubia and Upper Egypt. In Transactions of the Geology Institute, Russian Academy of Science (Vol. 170, 115 p.), Nauka, Moscow (in Russian).

    Google Scholar 

  • Clauzon, G., Suc, J.-P., DumurdĹľanov, N., Melinte-Dobrinescu, M. C., & Zagorchev, I. (2008). The Pliocene Gilbert-type fan delta of Draĉevo (Skopje area, Republic of Macedonia): Paleogeographic inference. Geologica Macedonica, 2, 21–28.

    Google Scholar 

  • Dalla, S., Harby, H., & Serazz, M. (1997). Hydrocarbon exploration in a complex incised valley fill: An example from the late Messinian Abu Madi Formation (Nile Delta Basin, Egypt). The Leading Edge, 12, 1820–1824.

    Google Scholar 

  • Danukalova, G. A. (1990). Bivalve mollusks and the Akchagylian stratigraphy (PhD thesis). Paleontological Institute of the USSR Academy of Science (192 p.), Moscow (in Russian).

    Google Scholar 

  • Eder, V. G., Ryzhkova, S. V., Kostyreva, E. A., Pavlova, M. A., Sotnich, I. S., Zamirailova, A. G., & Ponomareva, E. V. (2020). Lithologic, geochemical, and geophysical characteristics of the boundary Strata of the Bazhenov and Kulomza Horizons (Lower Cretaceous Base) in the central regions of the West Siberia. Geology and Geophysics, 61(7), 767–782.

    Article  Google Scholar 

  • Einarsson, T. (1957). Magneto-geological mapping in Iceland with the use of a compass. Philosophical Magazine, Suppl. 6, No. 2, 232–239.

    Google Scholar 

  • Eppelbaum, L. V., Ben-Avraham, Z., Katz, Y. I., Cloetingh, S., & Kaban, M. (2020). Combined multifactor evidence of a giant lower-mantle ring structure below the Eastern Mediterranean. Positioning, 11, 11–32.

    Article  Google Scholar 

  • Eppelbaum, L. V., Ben-Avraham, Z., Katz, Y., Cloetingh, S., & Kaban, M. (2021). Giant quasi-ring mantle structure in the African-Arabian junction: Results derived from the geological-geophysical data integration. Geotectonics, 55(1), 67–93.

    Article  Google Scholar 

  • Eppelbaum, L. V., & Katz, Y. I. (2011). Tectonic-geophysical mapping of Israel and eastern Mediterranean: Implication for hydrocarbon prospecting. Positioning, 2(1), 36–54.

    Article  Google Scholar 

  • Eppelbaum, L. V., & Katz, Y. I. (2015). Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Marine and Petroleum Geology, 65, 198–216.

    Article  Google Scholar 

  • Eppelbaum, L., & Katz, Y. (2021). Akchagylian hydrospheric phenomenon in aspects of deep geodynamics. Stratigraphy and Sedimentation of Oil-Gas Basins, 2, 8–26.

    Google Scholar 

  • Eppelbaum, L. V., & Katz, Y. I. (2022). Combined zonation of the African-Levantine-Caucasian areal of ancient hominin: Review and integrated analysis of paleogeographical, stratigraphic, and geophysical-geodynamical data. Geosciences (Switzerland), 27(1), 1–23.

    Google Scholar 

  • Eppelbaum, L. V., Katz, Y. I., & Ben-Avraham, Z. (2012). Israel–petroleum geology and prospective provinces. AAPG European Newsletter, 4, 4–9.

    Google Scholar 

  • Eppelbaum, L. V., & Khesin, B. E. (2012). Geophysical studies in the Caucasus. Springer.

    Google Scholar 

  • Faccenna, C., Gueydan, F., Sokoutis, D., Philippon, M., Kydonakis, K., et al. (2016). The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Canadian Journal of Earth Sciences, 53(11), 1142–1157.

    Article  Google Scholar 

  • Gasanov, T. A., & Aliyeva, S. G. (2003). Stratigraphy of sediments of akchagylian and apsheronian in foothills of southeast part of Lesser Caucasus. Geology of Oil, 37(1), 23–30.

    Google Scholar 

  • Gladenkov, Y. B. (1978). Pliozen-antropogen (Pliocene-Anthropogen. In Iceland and the mid-ocean ridge. Stratigraphy and lithology (pp. 62–85). Nauka, Moscow (in Russian).

    Google Scholar 

  • Gurary, G. Z., 1988. Geomagnetic field during reversals in the late Cenozoic (Vol. 415, 207 p.). Transaction of the Geological Institute Academy of Science USSR (in Russian).

    Google Scholar 

  • Gvirtzman, G., & Buchbinder, B. (1969). Outcrops of Neogene formation in the central and southern coastal plain Hashefela and Beer Sheva regions, Israel. Geological Survey of Israel Bulletin, 50, 1–76.

    Google Scholar 

  • Hall, J. K., Krasheninnikov, V. A., Hirsch, F., Benjamini, C., & Flexer, A. (2005). Geological framework of the Levant. Vol. II: The Levantine Basin and Israel (826 p). Historical Productions-Hall, Jerusalem, Israel.

    Google Scholar 

  • HsĂĽ, K. J., Citta, M. B., & Ryan, W. B. F. (1972). The origin of the Mediterranean evaporites. In A. G. Kaneps (Ed.), Initial reports of the deep-sea drilling project, XIII (Part 2) (pp. 1203–1231). U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Kamaletdinov, M. A., & Yakhimovich, V. L. (Responsible Editors). (1981). Pliocene and pleistocene of the Volga-Ural region. Bashkir Branch of the USSR Academy of Science (176 p.), Institute of Geology, Nauka, Moscow (in Russian)

    Google Scholar 

  • KarakaĹź, Ç., Armijo, R., Lacassin, R., Suc, J.-P., & Melinte-Dobrinescu, M. C. (2018). Crustal strain in the Marmara Pull-Apart region associated with the propagation process of the North Anatolian fault. Tectonics, 37(5), 1507–1523.

    Article  Google Scholar 

  • Katz, Y. I. (1986). Cretaceous Thalassocratic Maximum and Planetary Movements of the Hydrosphere. In D. P Naidin (Ed.), Cretaceous period. Paleogeography and paleooceanology (pp. 191–237). Nauka, Moscow (in Russian).

    Google Scholar 

  • Khain, V. E., & Polyakova, I. D. (2008). Large and giant hydrocarbon accumulations in the transitional continent-ocean zone. Geotectonics, 3, 3–17.

    Google Scholar 

  • Kontakiotis, G., Karakitsios, V., CornĂ©e, J.-J., Moissette, P., Zarkogiannis, S. D., Pasadakis, N., Koskeridou, E., Manoutsoglou, E., Drinia, H., & Antonarakou, A. (2020). Preliminary results based on geochemical sedimentary constraints on the hydrocarbon potential and depositional environment of a Messinian sub-salt mixed siliciclastic-carbonate succession onshore Crete (Plouti section, eastern Mediterranean). Mediterranean Geoscience Reviews, 2, 247–265.

    Article  Google Scholar 

  • Koskeridou, E., Vardala-Theodorou, E., & Moissette, P. (2009). Pliocene and Pleistocene shallow-water chitons (Mollusca) from Rhodes Island, Greece. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen, 251(3), 303–330.

    Article  Google Scholar 

  • Krijgsman, W., Capella, W., Simon, D., Hilgen, F. J., Kouwenhoven, T. J., Meijer, P. T., Sierro, F. J., Tulbure, M. A., van den Berg, B. C. J., van der Schee, M., & Flecker, R. (2018). The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Marine Geology, 403, 238–246.

    Article  Google Scholar 

  • Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., van Baak, C. G. C., Agusti, J., Alçiçek, M. C., Aliyeva, E., Bista, D., Bruch, A., BĂĽyĂĽkmeriç, Y., Bukhsianidze, M., Flecker, R., Frolov, P., Hoyle, T. M., Jorissen, E. L., Kirscher, U., Koriche, S. A., … Wesselingh, F. P. (2019). Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews, 188, 1–40.

    Google Scholar 

  • Lapkin, I. Y., & Đšaц, Y. I. (1990). Geological events at the carboniferous and permian boundary. Izvestiya Academy of Science USSR, 8, 45–58. (in Russian).

    Google Scholar 

  • Lazarev, S., Kuiper, K. F., Oms, O., Bukhsianidze, M., Vasilyan, D., Jorissen, E. L., Bouwmeester, M. J., Aghayeva, V., van Amerongen, A. J., AgustĂ­, J., Lordkipanidze, D., & Krijgsman, W. (2021). Five-fold expansion of the Caspian Sea in the late Pliocene: New and revised magnetostratigraphic and 40Ar/39Ar age constraints on the Akchagylian Stage. Global and Planetary Change, 206, 1–19.

    Google Scholar 

  • Le Pichon, X., Chamot-Rooke, N., & Lallema, S. (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Journal of Geophysical Research, 100(B7), 12675–12690.

    Article  Google Scholar 

  • Mandic, O., KureÄŤić, T., Neubauer, T. A., & Harzhauer, M. (2015). Stratigraphic and paleogeographic significance of lacustrine mollusks from the Pliocene Viviparus beds in central Croatia. Geologia Croatica, 68(3), 179–207.

    Google Scholar 

  • Matsuoka, K., & Bujak, J. P. (1988). Cenozoic dinoflagellate cysts from the Navarin Basin, Norton Sound and St. George Basin, Bering Sea. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 29(1), 1–147.

    Google Scholar 

  • Milankovitsch, M. (1941). Canon of insolation and the ice-age problem (Vol. 132, 634 p.). Special Publication of the Royal Serbian Academy, Serbia.

    Google Scholar 

  • Mironova, L. V. (Chief Editor) (1982). Stratigraphic dictionary of the USSR (611 p.). Paleogene, Neogene, Quaternary System. Nedra, Leningrad (in Russian).

    Google Scholar 

  • Moskovits, S. (2012). The mollusca in the marine Pliocene and Pleistocene sediments of the south-eastern Medititerranean Basin (Cyprus–Israel). The Geological Survey of Israel, Report GSI/25/2012, 1–159.

    Google Scholar 

  • Naidin, D. P., & Naidina, O. D. (1992). On the so-called Great Akchagylian transgression. Izvestiya Vyzov. Geologiya i Razvedka, 6, 3–18. (in Russian).

    Google Scholar 

  • Naidina, O. D., & Richards, K. (2020). The Akchagylian stage (Late Pliocene-Early Pleistocene) in the North Caspian Region: Pollen evidence for vegetation and climate change in the Urals-Emba region. Quaternary International, 540, 22–37.

    Article  Google Scholar 

  • Neubauer, T. A., Harzhauser, M., Kron, A., Georgopoulou, E., & Mandic, O. (2015). A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth Science Reviews, 143, 98–116.

    Article  Google Scholar 

  • Nevesskaya, L. A., Goncharova, I. A., Il'ina, L. B., Paramonova, N. P., Popov, S. V., Babak, E. V., Bagdasaryan, K. G., & Voronina, A. A. (1986). History of the Neogene mollusks of the Paratethys. Transactions of the Paleontology Institute of the Academy Science USSR (Vol. 200, 208 p.). Nauka, Moscow (in Russian).

    Google Scholar 

  • Popov, G. I. (1969). Scheme of the Akchagylian stage stratification. In Geology and Economic Deposits of Turkmenistan (Stratigraphy) (pp. 179–223). Ashkhabad (in Russian).

    Google Scholar 

  • Raynaud, S., de la Boisse, H., Makroum, F. M., & Bertho, J. (2010). Geological and topographical study of the original hills at the base of Fourth Dynasty Egyptian monuments of the Memphite plateau. Bulletin de la SociĂ©tĂ© gĂ©ologique de France, 181(3), 279–290.

    Article  Google Scholar 

  • Reilinger, R. E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A. et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(BO5411), 1–26.

    Google Scholar 

  • Richards, K., van Baak, C. G. C., Athersuch, J., Hoyle, T. M., Stoica, M., William. E. N., Austin, W. E. H., Cage, A. G., Wonders, A. A. H., Marreti, F., & Pinnington, C. A. (2018). Palynology and micropalaeontology of the Pliocene—Pleistocene transition in outcrop from the western Caspian Sea, Azerbaijan: Potential links with the Mediterranean, Black Sea and the Arctic Ocean? Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 119–143.

    Google Scholar 

  • Richards, K., Vincent, S. J., Davies, C. E., Hinds, D. J., & Aliyeva, E. (2021). Palynology and sedimentology of the Pliocene productive series from Eastern Azerbaijan. Palynology, 45(4), 569–598.

    Article  Google Scholar 

  • Roberts, G., & Peace, D. (2007). Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. GeoArabia, 12, 99–124.

    Article  Google Scholar 

  • Said, R. (1962). The geology of Egypt (p. 734). Elsevier Publ. Co.

    Google Scholar 

  • Schreurs, G. (1999). West-northwest directed obduction of the Batain Group on the eastern Oman continental margin at the cretaceous-tertiary boundary. Tectonics, 18(1), 148–160.

    Article  Google Scholar 

  • Searle, M. (2019). Geology of the Oman Mountains, Eastern Arabia (478 p.). GeoGuide, Springer Nature Switzerland AG.

    Google Scholar 

  • Sobolev, D. N. (1926). Earth and Life. I. The geological cycles (60 p.). Kiev (in Russian).

    Google Scholar 

  • Stovas, M. V. (1963). Some questions about tectogenesis. In Problems of planetary geology (pp. 222–274). Gosgeoltekhizdat, Moscow (in Russian).

    Google Scholar 

  • Trubikhin, V. M. (1977). Paleomagnetism and stratigraphy of the Agchagylian deposits of West Turkmenistan. In Transactions of the Geology Institute, Russian Academy of Science (Vol. 301, 79 p.). Nauka, Moscow (in Russian).

    Google Scholar 

  • Trubitsyn, V. P. (2012). Passage of oceanic plates through the upper and lower mantle boundary. Doklady Russian Academy Science, 446(6), 677–679. (in Russian).

    Google Scholar 

  • Van Baak, C. G. C., Grothe, A., Richards, K., Marius, S. M., Aliyeva, E., Daviesh, G. R., Kuiper, K. F., & Krijgsman, W. (2019). Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations. Global and Planetary Change, 174, 153–163.

    Article  Google Scholar 

  • Veronnet, A. A. (1912). Rotation de l’Ellipsoide Heterogene et Figure Exacte de la Terre. Journal de Mathematiques Pures et Appliquees, 6-me ser., 8, 331–463 (in French).

    Google Scholar 

  • Vincent, S. J., Davies, C. E., Richards, K., & Aliyeva, E. (2010). Contrasting Pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; a case study of the palaeo-Volga and palaeo-Kura River systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan. Marine and Petroleum Geology, 27(10), 2079–2106.

    Article  Google Scholar 

  • Vostryakov, A. P. (1964). Buried and accumulative surfaces of the Southern Trans-Volga region. In Alignment surface problems (pp. 107–115). Nauka, Moscow (in Russian).

    Google Scholar 

  • Zarkhidze, V. S., & Krasnozhen, A. S. (1973). Experience in the selection of polygenetic surfaces of alignment in the north of the Timan-Ural region. Izvestiya Komi Branch of the Geographical Society of USSR (Vol. 16, pp. 97–105). Syktyvkar (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alizadeh, A. et al. (2024). Akchagylian Hydrospheric Phenomenon and Its Connection with Deep Geodynamics. In: Pliocene Hydrocarbon Sedimentary Series of Azerbaijan. Advances in Oil and Gas Exploration & Production. Springer, Cham. https://doi.org/10.1007/978-3-031-50438-9_16

Download citation

Publish with us

Policies and ethics