Skip to main content

Abstract

Exosomes are small vesicles that are released by cells, including medicinal signaling cells (MSCs), and play a role in intercellular communication. In regenerative medicine, exosomes are being explored as potential therapeutic agents due to their ability to transfer biomolecules between cells. For example, exosomes have been used to deliver small interfering ribonucleic acid (RNA) molecules to target cells, which can silence specific genes and modulate cell function. Additionally, exosomes can contain non-coding RNA, which plays a significant role in epigenetic control and can influence tumor metastasis. The goal of regenerative medicine is to take advantage of the epigenetic effect of exosomes while promoting repair and regeneration in targeted areas of the body. Exosomes have also been shown to improve symptoms of sarcopenia and have shown potential in applications such as knee osteoarthritis (OA), cartilage restoration, and tendon regeneration. Further research is needed to fully understand the mechanisms of exosomes in promoting tissue repair and to develop new strategies for the treatment of musculoskeletal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiel D. The role of exosomes in regenerative medicine. In: Manchikanti L, Navani A, Atluri S, editors. Essentials of regenerative medicine in interventional pain management. Paducah, KY: ASIPP Publishing; 2019. p. 115–28.

    Google Scholar 

  2. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.

    Article  CAS  PubMed  Google Scholar 

  5. Schwarzenbach H, Gahan PB. Exosomes in immune regulation. Noncoding RNA. 2021;7:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation. Expert Opin Biol Ther. 2016;16:489–506.

    Article  CAS  PubMed  Google Scholar 

  7. Gowen A, Shahjin F, Chand S, et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications. Front Cell Dev Biol. 2020;8:149.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care (New Rochelle). 2012;1:147–52.

    Article  PubMed  Google Scholar 

  10. Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41.

    Article  CAS  PubMed  Google Scholar 

  11. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56.

    Article  CAS  PubMed  Google Scholar 

  12. Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.

    Article  CAS  PubMed  Google Scholar 

  13. Wahlgren J, Karlson DLT, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang D, Zhang W, Zhang C, et al. Exosomal non-coding RNAs have a significant effect on tumor metastasis. Mol Ther Nucleic Acids. 2022;29:16–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Behbahani GD, Khani S, Hosseini HM, et al. The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iran J Basic Med Sci. 2016;19:1031–9.

    PubMed  PubMed Central  Google Scholar 

  16. Mansouri V, Beheshtizadeh N, Gharibshahian M, et al. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother. 2021;141:111875.

    Article  CAS  PubMed  Google Scholar 

  17. Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother. 2011;38:107–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hunt CJ. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus Med Hemother. 2019;46:134–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng Y, Zeng Q, Han Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019;10:295–9.

    Article  CAS  PubMed  Google Scholar 

  20. Danielyan L, Schwab M, Siegel G, et al. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine. 2020;60:102989.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Yeung BZ, Cui M, et al. Exosome is a mechanism of intercellular drug transfer: application of quantitative pharmacology. J Control Release. 2017;268:147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sancho-Albero M, Navascués N, Mendoza G, et al. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnol. 2019;17:16.

    Article  Google Scholar 

  23. Zhou G, Wang Y, Gao S, et al. Potential mechanisms and perspectives in ischemic stroke treatment using stem cell therapies. Front Cell Dev Biol. 2021;9:646927.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wakabayashi K, Nagai A, Sheikh AM, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010;88:1017–25.

    Article  CAS  PubMed  Google Scholar 

  25. Wagenaar N, de Theije CGM, de Vries LS, et al. Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res. 2018;83:372–84.

    Article  CAS  PubMed  Google Scholar 

  26. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. 2019;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santilli V, Bernetti A, Mangone M, et al. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11:177–80.

    PubMed  PubMed Central  Google Scholar 

  28. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2197–223.

    Article  PubMed  Google Scholar 

  29. Miao C, Zhou W, Wang X, et al. The research progress of exosomes in osteoarthritis, with particular emphasis on the mediating roles of miRNAs and lncRNAs. Front Pharmacol. 2021;12:685623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7:180–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeyaraman M, Muthu S, Gulati A, et al. Mesenchymal stem cell-derived exosomes: a potential therapeutic avenue in knee osteoarthritis. Cartilage. 2021;13:1572S–85S.

    Article  CAS  PubMed  Google Scholar 

  32. Meng F, Li Z, Zhang Z, et al. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics. 2018;8:2862–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He L, He T, Xing J, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020;11:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res. 2020;381:99–114.

    Article  CAS  PubMed  Google Scholar 

  35. Wu F, Nerlich M, Docheva D. Tendon injuries: basic science and new repair proposals. EFORT Open Rev. 2017;2:332–42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rashid MS, Cooper C, Cook J, et al. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Acta Orthop. 2017;88:606–11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang Z, Cao H, Gao S, et al. Effect of tendon stem cells in chitosan/β-glycerophosphate/collagen hydrogel on achilles tendon healing in a rat model. Med Sci Monit. 2017;23:4633–43.

    Article  PubMed  Google Scholar 

  38. Wang Y, He G, Guo Y, et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med. 2019;23:5475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meng F, Xue X, Yin Z, et al. Research progress of exosomes in bone diseases: mechanism, diagnosis and therapy. Front Bioeng Biotechnol. 2022;10:866627.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xie Y, Hu JH, Wu H, et al. Bone marrow stem cells derived exosomes improve osteoporosis by promoting osteoblast proliferation and inhibiting cell apoptosis. Eur Rev Med Pharmacol Sci. 2019;23:1214–20.

    CAS  PubMed  Google Scholar 

  41. Zhao P, Xiao L, Peng J, et al. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3962–70.

    CAS  PubMed  Google Scholar 

  42. Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res. 2013;28:1180–90.

    Article  CAS  PubMed  Google Scholar 

  43. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  44. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95.

    Article  CAS  PubMed  Google Scholar 

  45. Walpurgis K, Thomas A, Thevis M. Detection of the myostatin-neutralizing antibody Domagrozumab in serum by means of Western blotting and LC-HRMS. Drug Test Anal. 2019;11:1714–23.

    Article  CAS  PubMed  Google Scholar 

  46. Rong S, Wang L, Peng Z, et al. The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle. 2020;11:348–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Byun SE, Sim C, Chung Y, et al. Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells. Curr Issues Mol Biol. 2021;43:1473–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bayati V, Hashemitabar M, Gazor R, et al. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46:113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Liu C, Li S, et al. BMSC-derived exosomes inhibit dexamethasone-induced muscle atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne). 2021;12:681267.

    Article  PubMed  Google Scholar 

  50. Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 2019;13:10015–28.

    Article  CAS  PubMed  Google Scholar 

  52. Perets N, Hertz S, London M, et al. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol Autism. 2018;9:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–6.

    Article  CAS  PubMed  Google Scholar 

  54. Raymond SB, Treat LH, Dewey JD, et al. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS One. 2008;3:e2175.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Alptekin A, Khan MB, Ara R, et al. Pulsed focal ultrasound as a non-invasive method to deliver exosomes in the brain/stroke. J Biomed Nanotechnol. 2021;17:1170–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nat Commun. 2018;9:2336.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548:52–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This book chapter is modified and updated from a previous book chapter, “The Role of Exosomes in Regenerative Medicine” by Doug Spiel, MD, in Essentials of Regenerative Medicine in Interventional Pain Management published by ASIPP Publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Jordan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, S., Haroon, J. (2024). The Role of Exosomes in Regenerative Medicine. In: Navani, A., Atluri, S., Sanapati, M. (eds) Essentials of Regenerative Medicine in Interventional Pain Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50357-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50357-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50356-6

  • Online ISBN: 978-3-031-50357-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics