Skip to main content

The Coherent Multi-representation Problem for Protein Structure Determination

  • Conference paper
  • First Online:
Dynamics of Information Systems (DIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14321))

Included in the following conference series:

  • 98 Accesses

Abstract

The Coherent Multi-representation Problem (CMP) was recently introduced and presented as an extension of the well-known Distance Geometry Problem (DGP). In this short contribution, we establish a closer relationship between the CMP and the problem of protein structure determination based on NMR experiments. Moreover, we introduce the concept of “level of coherence” for the several representations involved in the CMP, and provide some details about some ongoing research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mucherino/DistanceGeometry, javaCMP folder.

References

  1. Abe, H., Braun, W., Noguti, T., G\(\bar{\text{o}}\), N.: Rapid calculation of first and second derivatives of conformational energy with respect to dihedral angles for proteins general recurrent equations. Comput. Chem. 8(4), 239–247 (1984)

    Google Scholar 

  2. Almeida, F.C.L., Moraes, A.H., Gomes-Neto, F.: An overview on protein structure determination by NMR, historical and future perspectives of the use of distance geometry methods. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry, pp. 377–412. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_18

    Chapter  Google Scholar 

  3. Berezovsky, I.N., Guarnera, E., Zheng, Z.: Basic units of protein structure, folding, and function. Prog. Biophys. Mol. Biol. 128, 85–99 (2017)

    Article  Google Scholar 

  4. Braun, W., Bösch, C., Brown, L.R., \(\bar{\text{ O }}\) Nobuhiro, G., Wüthrich, K.: Combined use of proton-proton overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Appl. Micelle-Bound Glucagon, Biochimica et Biophysica Acta \(-\) Protein Struct. 667(2), 377–396 (1981)

    Google Scholar 

  5. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons, Hoboken (1988)

    Google Scholar 

  6. de Brevern, A.G., Valadié, H., Hazout, S., Etchebest, C.: Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci. 11(12), 2871–2886 (2002)

    Article  Google Scholar 

  7. Gonçalves, D.S., Mucherino, A.: Discretization orders and efficient computation of cartesian coordinates for distance geometry. Optim. Lett. 8(7), 2111–2125 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gonçalves, D.S., Mucherino, A.: A distance geometry procedure using the Levenberg-Marquardt algorithm and with applications in biology but not only. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuno, F. (eds.) Bioinformatics and Biomedical Engineering. Lecture Notes in Computer Science(), vol. 13347, pp. 142–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07802-6_13

    Chapter  Google Scholar 

  9. Güntert, P., Buchner, L.: Combined automated NOE assignment and structure calculation with CYANA. J. Biomol. NMR 62, 453–471 (2015)

    Article  Google Scholar 

  10. Güntert, P., Mumenthaler, C., Wthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273(1), 283–298 (1997)

    Article  Google Scholar 

  11. Havel, T.F., Kuntz, I.D., Crippen, G.M.: The theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720 (1983)

    Article  MathSciNet  Google Scholar 

  12. Hengeveld, S.B., Malliavin, T., Liberti, L., Mucherino, A.: Collecting data for generating distance geometry graphs for protein structure determination. In: Proceedings of ROADEF23, Rennes, France, p. 2, (2023)

    Google Scholar 

  13. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  14. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry, pp. 329–350. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_16

    Chapter  Google Scholar 

  15. Moreira, I.S., Fernandes, P.A., Ramos, M.J.: Protein-protein docking dealing with the unknown. J. Comput. Chem. 31(2), 317–342 (2010)

    Article  Google Scholar 

  16. Mucherino, A.: The coherent multi-representation problem with applications in structural biology. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuno, F. (eds.) Bioinformatics and Biomedical Engineering. Lecture Notes in Computer Science(), vol. 13919, pp. 338–346. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34953-9_27

    Chapter  Google Scholar 

  17. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory Methods and Applications, p. 410. Springer, Cham (2013)

    Google Scholar 

  18. Mucherino, A., Lavor, C., Malliavin, T., Liberti, L., Nilges, M., Maculan, N.: Influence of pruning devices on the solution of molecular distance geometry problems. In: Pardalos, P.M., Rebennack, S. (eds.) Experimental Algorithms. Lecture Notes in Computer Science, vol. 6630, pp. 206–217. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-20662-7_18

    Chapter  Google Scholar 

  19. Mucherino, A., Lin, J.-H., Gonçalves, D.S.: A coarse-grained representation for discretizable distance geometry with interval data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019. LNCS, vol. 11465, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17938-0_1

    Chapter  Google Scholar 

  20. Nascimento, C.: Ressonância Magnética Nuclear (in Portuguese), p. 120. Blusher, São Paulo (2016)

    Google Scholar 

  21. Nilges, M.: Calculation of protein structures with ambiguous distance restraints. automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245(5), 645–660 (1995)

    Article  Google Scholar 

  22. Pennestrì, E., Stefanelli, R.: Linear algebra and numerical algorithms using dual numbers. Multibody Sys. Dyn. 18, 323–344 (2007)

    Article  MathSciNet  Google Scholar 

  23. Shen, Y., Bax, A.: Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol. 1260, 17–32 (2015)

    Article  Google Scholar 

  24. Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44(4), 213–236 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the international PRCI project multiBioStruct, co-funded by the ANR French funding agency (ANR-19-CE45-0019) and the National Science and Technology Council (NSTC) of Taiwan (MoST 109-2923-M-001-004-MY3). Most of the discussions, giving rise to some of the ideas presented in this paper, took indeed place during one of the visits of AM to Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mucherino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mucherino, A., Lin, JH. (2024). The Coherent Multi-representation Problem for Protein Structure Determination. In: Moosaei, H., Hladík, M., Pardalos, P.M. (eds) Dynamics of Information Systems. DIS 2023. Lecture Notes in Computer Science, vol 14321. Springer, Cham. https://doi.org/10.1007/978-3-031-50320-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50320-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50319-1

  • Online ISBN: 978-3-031-50320-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics