Skip to main content

Learning Local Features of Motion Chain for Human Motion Prediction

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14497))

Included in the following conference series:

  • 188 Accesses

Abstract

Extracting local features is a key technique in the field of human motion prediction. However, Due to incorrect partitioning of strongly correlated joint sets, existing methods ignore parts of strongly correlated joint pairs during local feature extraction, leading to prediction errors in end joints. In this paper, a Motion Chain Learning Framework is proposed to address the problem of prediction errors in end joints, such as hands and feet. The key idea is to mine and build strong correlations for joints belonging to the same motion chain. To be specific, all human joints are first divided into five parts according to the human motion chains. Then, the local interaction relationship between joints on each motion chain is learned by GCN. Finally, a novel Weights-Added Mean Per Joint Position Error loss function is proposed to assign different weights to each joint based on the importance in human biomechanics. Extensive evaluations demonstrate that our approach significantly outperforms state-of-the-art methods on the datasets such as H3.6M, CMU-Mocap, and 3DPW. Furthermore, the visual result confirms that our Motion Chain Learning Framework can reduce errors in end joints while working well for the other joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arus, E.: Biomechanics of Human Motion: Applications in the Martial Arts. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  2. Bartlett, R.: Introduction to Sports Biomechanics: Analysing Human Movement Patterns. Routledge (2014)

    Google Scholar 

  3. Cai, Y., et al.: Learning progressive joint propagation for human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part VII. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14

    Chapter  Google Scholar 

  4. Chen, S., Liu, B., Feng, C., Vallespi-Gonzalez, C., Wellington, C.: 3D point cloud processing and learning for autonomous driving: impacting map creation, localization, and perception. IEEE Signal Process. Mag. 38(1), 68–86 (2020)

    Article  Google Scholar 

  5. Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3D human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6519–6527 (2020)

    Google Scholar 

  6. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11467–11476 (2021)

    Google Scholar 

  7. Ding, P., Yin, J.: Towards more realistic human motion prediction with attention to motion coordination. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5846–5858 (2022)

    Article  Google Scholar 

  8. Fan, C., Zhang, R., Ming, Y.: MP-LN: motion state prediction and localization network for visual object tracking. Vis. Comput. 1–16 (2021)

    Google Scholar 

  9. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)

    Google Scholar 

  10. Gui, L.Y., Wang, Y.X., Ramanan, D., Moura, J.M.: Few-shot human motion prediction via meta-learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 432–450 (2018)

    Google Scholar 

  11. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Article  Google Scholar 

  12. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5308–5317 (2016)

    Google Scholar 

  13. Li, C., Zhang, Z., Lee, W.S., Lee, G.H.: Convolutional sequence to sequence model for human dynamics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5226–5234 (2018)

    Google Scholar 

  14. Li, M., Chen, S., Zhang, Z., Xie, L., Tian, Q., Zhang, Y.: Skeleton-parted graph scattering networks for 3D human motion prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part VI. LNCS, vol. 13666, pp. 18–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_2

    Chapter  Google Scholar 

  15. Liu, X., Yin, J., Liu, J., Ding, P., Liu, J., Liu, H.: TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2133–2146 (2020)

    Article  Google Scholar 

  16. Liu, Z., et al.: Towards natural and accurate future motion prediction of humans and animals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10004–10012 (2019)

    Google Scholar 

  17. Lu, T.W., Chang, C.F.: Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 28, S13–S25 (2012)

    Article  Google Scholar 

  18. Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6437–6446 (2022)

    Google Scholar 

  19. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9489–9497 (2019)

    Google Scholar 

  20. Pavllo, D., Feichtenhofer, C., Auli, M., Grangier, D.: Modeling human motion with quaternion-based neural networks. Int. J. Comput. Vision 128, 855–872 (2020)

    Article  Google Scholar 

  21. Qin, Y., Chi, X., Sheng, B., Lau, R.W.: GuideRender: large-scale scene navigation based on multi-modal view frustum movement prediction. Vis. Comput. 1–11 (2023)

    Google Scholar 

  22. Song, S., Chau, L.P., Lin, Z.: Portrait matting using an attention-based memory network. Vis. Comput. 1–14 (2023)

    Google Scholar 

  23. Von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

    Google Scholar 

  24. Vukotić, V., Pintea, S.-L., Raymond, C., Gravier, G., van Gemert, J.C.: One-step time-dependent future video frame prediction with a convolutional encoder-decoder neural network. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017, Part I. LNCS, vol. 10484, pp. 140–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_13

    Chapter  Google Scholar 

  25. Wang, H., Ho, E.S., Shum, H.P., Zhu, Z.: Spatio-temporal manifold learning for human motions via long-horizon modeling. IEEE Trans. Visual Comput. Graphics 27(1), 216–227 (2019)

    Article  Google Scholar 

  26. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  27. Zhang, T., Cao, Y., Zhang, L., Li, X.: Efficient feature fusion network based on center and scale prediction for pedestrian detection. Vis. Comput. 39(9), 3865–3872 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation Project of CQ (No. CSTC2021JCYJ-MAXMX0062), National Natural Science Foundation of China (No. 62002121 and 62072183), Shanghai Science and Technology Commission (No. 21511100700, 22511104600), the Open Project Program of the State Key Lab of CAD &CG (No. A2203), Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoqi He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1005 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Chen, L., Li, C., Wang, C., He, G. (2024). Learning Local Features of Motion Chain for Human Motion Prediction. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14497. Springer, Cham. https://doi.org/10.1007/978-3-031-50075-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50075-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50074-9

  • Online ISBN: 978-3-031-50075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics