Skip to main content

Action Recognition via Fine-Tuned CLIP Model and Temporal Transformer

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14497))

Included in the following conference series:

  • 219 Accesses

Abstract

Contrastive image-text pre-trained model, i.e. CLIP, has been proved successful transferring to the video domain. It shows remarkable “zero-shot” generalization ability for various large-scale datasets. However, most researches are based on the datasets like Kinetics and UCF-101. These datasets focus more on appearance rather than temporal order information. In other words, training on these datasets may not reward good temporal understanding in videos. We want to capture the long-range dependencies of frames along the temporal dimension.

In this paper, we deal with this problem by applying a temporal transformer module and the backbone fine-tuning strategy. Fine-tuning the backbone model helps the image based model fits the video environment, and the temporal transformer module captures detailed spatiotemporal information We mainly focus the performance on the action-centered dataset Something V2 because it contains a large proportion of temporal classes. We adopt the language-image pretrained models like CLIP to further study the zero-shot ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  2. Bangalath, H., Maaz, M., Khattak, M.U., Khan, S.H., Shahbaz Khan, F.: Bridging the gap between object and image-level representations for open-vocabulary detection. In: Advances in Neural Information Processing Systems, vol. 35, pp. 33781–33794 (2022)

    Google Scholar 

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)

    Google Scholar 

  4. Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K.: Rethinking zero-shot video classification: end-to-end training for realistic applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4613–4623 (2020)

    Google Scholar 

  5. Chen, S., Huang, D.: Elaborative rehearsal for zero-shot action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13638–13647 (2021)

    Google Scholar 

  6. Ding, J., Xue, N., Xia, G.S., Dai, D.: Decoupling zero-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11583–11592 (2022)

    Google Scholar 

  7. Fan, Q., et al.: An image classifier can suffice for video understanding. arXiv preprint: arXiv:2106.14104 (2021)

  8. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  9. Girdhar, R., Grauman, K.: Anticipative video transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13505–13515 (2021)

    Google Scholar 

  10. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)

    Google Scholar 

  11. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint: arXiv:2104.13921 (2021)

  12. He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning for video-based person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1490–1501 (2021)

    Google Scholar 

  13. Huang, D.A., et al.: What makes a video a video: analyzing temporal information in video understanding models and datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7366–7375 (2018)

    Google Scholar 

  14. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  15. Ju, C., Han, T., Zheng, K., Zhang, Y., Xie, W.: Prompting visual-language models for efficient video understanding. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022. Lecture Notes in Computer Science, vol. 13695, pp. 105–124. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_7

    Chapter  Google Scholar 

  16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  17. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint: arXiv:1705.06950 (2017)

  18. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  19. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint: arXiv:2201.03546 (2022)

  20. Li, W., Liu, H., Tang, H., Wang, P., Van Gool, L.: MHFormer: multi-hypothesis transformer for 3D human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13147–13156 (2022)

    Google Scholar 

  21. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: temporal excitation and aggregation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2020)

    Google Scholar 

  22. Li, Y., Vasconcelos, N.: REPAIR: removing representation bias by dataset resampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9572–9581 (2019)

    Google Scholar 

  23. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  24. Lin, Z., et al.: Frozen clip models are efficient video learners. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. Lecture Notes in Computer Science, vol. 13695, pp. 388–404. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_23

    Chapter  Google Scholar 

  25. Liu, X., Zhang, H., Pirsiavash, H.: MASTAF: a model-agnostic spatio-temporal attention fusion network for few-shot video classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2508–2517 (2023)

    Google Scholar 

  26. Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3202–3211 (2022)

    Google Scholar 

  27. Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: TAM: temporal adaptive module for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13708–13718 (2021)

    Google Scholar 

  28. Luo, H., et al.: Clip4clip: an empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing 508, 293–304 (2022)

    Article  Google Scholar 

  29. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: HowTo100M: learning a text-video embedding by watching hundred million narrated video clips. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2630–2640 (2019)

    Google Scholar 

  30. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  31. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3163–3172 (2021)

    Google Scholar 

  32. Ni, B., et al.: Expanding language-image pretrained models for general video recognition. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. Lecture Notes in Computer Science, vol. 13664, pp. 1–18. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_1

    Chapter  Google Scholar 

  33. Patrick, M., et al.: Keeping your eye on the ball: trajectory attention in video transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12493–12506 (2021)

    Google Scholar 

  34. Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2833–2842 (2017)

    Google Scholar 

  35. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  36. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  37. Rasheed, H., Khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Fine-tuned clip models are efficient video learners. arXiv preprint: arXiv:2212.03640 (2022)

  38. Sevilla-Lara, L., Zha, S., Yan, Z., Goswami, V., Feiszli, M., Torresani, L.: Only time can tell: Discovering temporal data for temporal modeling. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 535–544 (2021)

    Google Scholar 

  39. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint: arXiv:1212.0402 (2012)

  40. Thatipelli, A., Narayan, S., Khan, S., Anwer, R.M., Khan, F.S., Ghanem, B.: Spatio-temporal relation modeling for few-shot action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19958–19967 (2022)

    Google Scholar 

  41. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  42. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5552–5561 (2019)

    Google Scholar 

  43. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  44. Wang, M., Xing, J., Liu, Y.: ActionCLIP: a new paradigm for video action recognition. arXiv preprint: arXiv:2109.08472 (2021)

  45. Wang, Q., Chen, K.: Alternative semantic representations for zero-shot human action recognition. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_6

    Chapter  Google Scholar 

  46. Wasim, S.T., Naseer, M., Khan, S., Khan, F.S., Shah, M.: Vita-clip: video and text adaptive clip via multimodal prompting. arXiv preprint: arXiv:2304.03307 (2023)

  47. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  48. Xu, H., et al.: Videoclip: contrastive pre-training for zero-shot video-text understanding. arXiv preprint: arXiv:2109.14084 (2021)

  49. Yan, S., et al.: Multiview transformers for video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3333–3343 (2022)

    Google Scholar 

  50. Yuan, L., et al.: Florence: A new foundation model for computer vision. arXiv preprint: arXiv:2111.11432 (2021)

  51. Yun, S., Kim, J., Han, D., Song, H., Ha, J.W., Shin, J.: Time is matter: temporal self-supervision for video transformers. arXiv preprint: arXiv:2207.09067 (2022)

  52. Zhang, R., et al.: Tip-adapter: training-free clip-adapter for better vision-language modeling. arXiv preprint: arXiv:2111.03930 (2021)

  53. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 803–818 (2018)

    Google Scholar 

  54. Zhou, C., Loy, C.C., Dai, B.: DenseCLIP: extract free dense labels from clip. arXiv preprint: arXiv:2112.01071 (2021)

  55. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825 (2022)

    Google Scholar 

  56. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

  57. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. Lecture Notes in Computer Science, vol. 13669, pp. 350–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_21

    Chapter  Google Scholar 

  58. Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9436–9445 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Fu, Y., Liu, T. (2024). Action Recognition via Fine-Tuned CLIP Model and Temporal Transformer. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14497. Springer, Cham. https://doi.org/10.1007/978-3-031-50075-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50075-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50074-9

  • Online ISBN: 978-3-031-50075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics