Skip to main content

Control Design of Machine Tool Feed Drives Using Mechatronic System Simulation

  • Conference paper
  • First Online:
Optimal Design and Control of Multibody Systems (IUTAM 2022)

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 42))

  • 115 Accesses

Abstract

Machine tools are among the most important components in modern production engineering where cost-effective manufacturing of parts with high geometric accuracy is required. The mechanical components of the machine together with feed drives and digital control loops form a complex mechatronic system which must be designed and optimized simultaneously. A mechatronic system simulation is developed, suitable for mutual optimization of mechanical structure, feed drives and control loops including multi-axis configurations like gantry and main-sub. Simulation results are compared to measurements on real machine tools and show excellent agreement. Furthermore, flatness-based exact feed forward control is used to significantly improve machine tool performance in simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altintas, Y., Brecher, C., Weck, M., Witt, S.: Virtual machine tool. CIRP Ann. 54(2), 115–138 (2005)

    Article  Google Scholar 

  2. Altintas, Y., Verl, A., Brecher, C., Uriarte, L., Pritschow, G.: Machine tool feed drives. CIRP Ann. 60(2), 779–796 (2011)

    Google Scholar 

  3. Altuzarra, O., Hernández, A., San Martín, Y., Larrañaga, J.: Parallel kinematics for machine tools. In: López de Lacalle, L., Lamikiz, A. (eds) Machine Tools for High Performance Machining. Springer, London (2009)

    Google Scholar 

  4. Ast, A., Eberhard, P.: Flatness-based control of parallel kinematics using multibody systems - simulation and experimental results. Arch. Appl. Mech. 76, 181–197 (2006)

    Google Scholar 

  5. Bachmayer, M., Ulbrich, H., Rudolph, J.: Flatness-based control of a horizontally moving erected beam with a point mass. Math. Comput. Model. Dyn. Syst. 17(1), 49–69 (2011)

    Article  MathSciNet  Google Scholar 

  6. Beckmann, D., Schappler, M., Dagen, M., Ortmaier, T.: New approach using flatness-based control in high speed positioning: experimental results. IEEE Int. Conf. Ind. Tech., 351–356 (2015)

    Google Scholar 

  7. Binder, R., Wiesauer, M.: Analyzing the impact of different drive concepts on machine tool dynamics using mechatronic system simulation. In: Proceedings of NAFEMS World Congress (2021)

    Google Scholar 

  8. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: On differentially flat nonlinear systems. IFAC Proc. 25(13), 159–163 (1992)

    Article  Google Scholar 

  9. Groß, H., Hamann, J., Wiegärtner, G.: Elektrische Vorschubantriebe in der Automatisierungstechnik. Publicis Corporate Publishing (2006)

    Google Scholar 

  10. Lévine, J.: Analysis and control of nonlinear systems. A flatness-based approach. Springer, Berlin, Heidelberg (2009)

    Book  Google Scholar 

  11. Rothfuß, R.: Anwendung flachheitsbasierter Analyse und Regelung nichtlinearer Mehrgrößensysteme. Düsseldorf: Fortschrittsberichte VDI, Reihe 8: Meß- Steuerungs- und Regelungstechnik, Nr. 664, VDI Verlag (1997)

    Google Scholar 

  12. Siemens, A.G.: Sinumerik one, axes and spindles, function manual. Siemens AG Digital Industries (2022)

    Google Scholar 

  13. Wiesauer, M., Bleicher, F.: Parameterization method for non-linear friction models of machine tool feed drives. Proc. CIRP 102, 399–404 (2021)

    Article  Google Scholar 

  14. Wiesauer, M., Habersohn, C., Bleicher, F.: Validation of a coupled simulation for machine tool dynamics using a linear drive actuator. J. Manuf. Mater. Process. 5, 1 (2021)

    Google Scholar 

  15. Yano, K.; Lévine, J.; Martin, P.; Rouchon, P.: The Theory of Lie Derivatives and its Applications. North-Holland (1957)

    Google Scholar 

  16. Zirn, O.: Machine tool analysis. modelling, simulation and control of machine tool manipulators. ETH Zürich (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binder, R., Ellermann, K., Sehrschön, H. (2024). Control Design of Machine Tool Feed Drives Using Mechatronic System Simulation. In: Nachbagauer, K., Held, A. (eds) Optimal Design and Control of Multibody Systems. IUTAM 2022. IUTAM Bookseries, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-031-50000-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50000-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49999-9

  • Online ISBN: 978-3-031-50000-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics