Skip to main content

The Role of Predators in Controlling the Spread of an Epidemic in Agriculture: The Case of Xylella fastidiosa

  • Chapter
  • First Online:
Mathematical Modeling and Control in Life and Environmental Sciences

Abstract

In this chapter, the role of a predator is analyzed as a possible biocontrol agent of epidemics in agriculture. As a concrete application, the case of Zelus renardii has been considered as a predator of Philaenus spumarius, for a possible control of a Xylella epidemic, which has been the subject of the previous chapter. By taking into account previous investigations, we show that the choice of the functional response to predation is crucial. Possible choices adopted in literature are the Holling type II predator (specialist) and the Holling type III predator (generalist). The analysis presented here shows that a H. II predator, whenever identified, would indeed lead to the eventual eradication of a Xylella epidemic. Unfortunately, Z. renardii has been reported to be a generalist predator, which implies an Holling type III functional response to predation; we show that it is not an efficient control strategy to eradicate a Xylella epidemic.

All of that has been illustrated by a set of computational experiments, within a variety of different possible parameter scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aniţa, S., Capasso, V., Montagna, M., & Scacchi, S. (2022). Predators as a possible strategy for controlling a Xylella epidemic? Mathematical Modelling of Natural Phenomena, 7, 279–305.

    MathSciNet  Google Scholar 

  2. Aniţa, S., Capasso, V., & Scacchi, S. (2021). Controlling the spatial spread of a Xylella epidemic. Bulletin of Mathematical Biology, 83, 32.

    Article  MathSciNet  Google Scholar 

  3. Aniţa, S., Casas, J., & Suppo, C. (2014). Impulsive spatial control of invading pests by generalist predators. Mathematical Medicine and Biology, 31, 284–301.

    Article  MathSciNet  Google Scholar 

  4. Beretta, E., Capasso, V., Scacchi, S., Brunetti, M., & Montagna, M. (2022). Prevention and control of OQDS (olive quick decline syndrome) outbreaks caused by Xylella fastidiosa. Journal of Theoretical Biology, 542, 111118.

    Article  MathSciNet  Google Scholar 

  5. Boscia, D., Altamura, G., Saponari, M., Tavano, D., Zicca, S., Pollastro, P., Silletti, M. R., Savino, V. N., Martelli, G. P., Delle Donne, A., Mazzotta, S., Signore, P. P., Troisi, M., Drazza, P., Conte, P., D’Ostuni, V., Merico, S., Perrone, G., Specchia, F., Stanca, A., & Tanieli, M. (2017). Incidenza di Xylella in oliveti con disseccamento rapido. Informatore Agrario, 27, 47–50.

    Google Scholar 

  6. Brezis, H. (2011). Sobolev spaces and partial differential equations. Springer.

    Google Scholar 

  7. Brunetti, M., Capasso, V., Montagna, M., & Venturino, E. (2020). A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control. Ecological Modelling, 432, 109–204.

    Article  Google Scholar 

  8. Cornara, D., Cavalieri, V., Dongiovanni, C., Altamura, G., Palmisano, F., Bosco, D., Porcelli, F., Almeida, R. P. P., & Saponari, M. (2017). Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. Journal of Applied Entomology, 141, 80–87.

    Article  Google Scholar 

  9. Davranoglou, L. R. (2011). Zelus renardii (Kolenati, 1856), a New World reduviid discovered in Europe (Hemiptera: Reduviidae: Harpactorinae). Entomologist’s Monthly Magazine, 147, 157–162.

    Google Scholar 

  10. Fierro, A., Liccardo, A., & Porcelli, F. (2019). A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Scientific Reports, 9, 8723.

    Article  Google Scholar 

  11. Lahbib, N., et al. (2022). Zelus renardii roaming in Southern Italy. Insects, 13, 158.

    Article  Google Scholar 

  12. Lewis, M. A., Petrovskii, S. V., & Potts, J. R. (2016). The mathematics behind biological invasions. Springer.

    Book  Google Scholar 

  13. Liccardi, A., Fierro, A., Garganese, F., Picciotti, U., & Porcelli, F. (2020). A biological control model to manage the vector and the infection of Xylella fastidiosa on olive trees. PLoS ONE, 15, e0232363.

    Article  Google Scholar 

  14. Martin, R. H. Jr. (1978). Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems. Journal of Differential Equations, 30, 391–423.

    Article  MathSciNet  Google Scholar 

  15. Quarteroni, A., & Valli, A. (1994). Numerical approximation of partial differential equations. Springer.

    Book  Google Scholar 

  16. Saponari, M., Boscia, D., Altamura, G., Loconsole, G., Zicca, S., D’Attoma, G., Morelli, M., Palmisano, F., Saponari, A., Tavano, D., Savino, V. N., Dongiovanni, C., & Martelli, G. P. (2017). Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Scientific Reports, 7, 17723.

    Article  Google Scholar 

  17. Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2018). Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology, 109, 175–186.

    Article  Google Scholar 

  18. Silva, S. E., Rodrigues, A. S. B., Marabuto, E., Yurtsever, S., Borges, P. A. V., Quartau, J. A., Paulo, O. S., & Seabra, S. G. (2015). Differential survival and reproduction in colour forms of Philaenus spumarius give new insights to the study of its balanced polymorphism. Ecological Entomology, 40, 759–766.

    Article  Google Scholar 

  19. Turchin, P. (2003). Complex population dynamics: A theoretical/empirical synthesis. Monographs in Population Biology. Princeton Univ. Press.

    Google Scholar 

  20. Villalobos, F. J., Testi, L., Hidalgo, J., Pastor, M., & Orgaz, F. (2006). Modelling potential growth and yield of olive (Olea europaea L.) canopies. European Journal of Agronomy, 24, 296–303.

    Article  Google Scholar 

  21. Yurtsever, S. (2000). On the polymorphic meadow spittlebug, Philaenus spumarius (L.) (Homoptera: Cercopidae). Turkish Journal of Zoology, 24, 447–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aniţa, S., Capasso, V., Scacchi, S. (2024). The Role of Predators in Controlling the Spread of an Epidemic in Agriculture: The Case of Xylella fastidiosa. In: Mathematical Modeling and Control in Life and Environmental Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-49971-5_6

Download citation

Publish with us

Policies and ethics