Skip to main content

Neurotrophic Factors in Parkinson’s Disease: Clinical Trials

  • Chapter
  • First Online:
Regenerative Medicine and Brain Repair

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 75))

  • 164 Accesses

Abstract

Introduction: Parkinson’s disease (PD) is characterized by the progressive loss of midbrain dopamine (DA) neurons that regulate voluntary movement and cognitive functions. Despite notable progress in the development of symptomatic therapy, the development of disease-modifying therapy for PD still holds big challenges. Neurotrophic factors (NTFs) are considered as potential regenerative therapy for PD because they can protect DA neurons and promote neuron survival both in vitro and in vivo. Although preclinical studies with the neurotrophic factors have proved to be efficient in animal PD models with mild lesions, the effect of NTFs on PD patients in clinical trials has been modest. In this review, we discuss the current state of NTFs therapies on PD treatment from preclinical and clinical studies, challenges with growth factors (GFs) therapy, and alternative approaches for further development of disease-modifying therapies. Methods: We formulated the questions and based on that, literature search was carried out using the PUBMED database. Further, we extracted the data, analyzed and summarized the findings. Results: GDNF family ligands GDNF and neurturin and CDNF/MANF neurotrophic factors are extensively studied in preclinical and clinical studies. In preclinical studies, these NTFs have demonstrated neurotrophic activities on DA neurons and have potential disease modifying properties in animal models of PD. However, the effect of NTFs in PD patients has been modest. Importantly, the results from clinical studies show beneficial effects of NTFs including improvements in motor symptoms and quality of life. Conclusion: NTFs still remains a potential candidate in the treatment of PD. However, development of GDNF based treatment has many difficulties related to effective delivery, poor diffusion and optimum dose. Regardless of the challenges, efforts to develop neurotrophic factors-based therapies should be continued towards clinical application in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394. https://doi.org/10.1038/nrn812

    Article  CAS  PubMed  Google Scholar 

  2. Airavaara M, Harvey BK, Voutilainen MH et al (2012) CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant 21:1213–1223. https://doi.org/10.3727/096368911X600948

    Article  PubMed  Google Scholar 

  3. Albert K, Raymundo DP, Panhelainen A et al (2021) Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations in vivo. Mol Ther 29:2821–2840. https://doi.org/10.1016/j.ymthe.2021.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialog Clin Neurosci 6:259. https://doi.org/10.31887/DCNS.2004.6.3/galexander

  5. Axelsen TM, Woldbye DPD (2018) Gene therapy for parkinson’s disease, an update. J. Parkinson’s Dis. 8:195–215. https://doi.org/10.3233/JPD-181331

    Article  Google Scholar 

  6. Axten JM, Medina JR, Feng Y et al (2012) Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 55:7193–7207. https://doi.org/10.1021/jm300713s

    Article  CAS  PubMed  Google Scholar 

  7. Bäck S, Peränen J, Galli E et al (2013) Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav 3:75–88. https://doi.org/10.1002/brb3.117

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bankiewicz KS, Sudhakar V, Samaranch L et al (2016) AAV viral vector delivery to the brain by shape-conforming MR-guided infusions. J Control Release 240:434–442. https://doi.org/10.1016/j.jconrel.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  9. Bartus RT, Kordower JH, Johnson EM et al (2015) Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol Dis 78:162–171. https://doi.org/10.1016/j.nbd.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  10. Beck KD, Irwin I, Valverde J et al (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16:665–673. https://doi.org/10.1016/s0896-6273(00)80085-9

    Article  CAS  PubMed  Google Scholar 

  11. Bensadoun JC, Déglon N, Tseng JL et al (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24. https://doi.org/10.1006/exnr.2000.7409

    Article  CAS  PubMed  Google Scholar 

  12. Bespalov MM, Saarma M (2007) GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28:68–74. https://doi.org/10.1016/j.tips.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Bespalov MM, Sidorova YA, Tumova S et al (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192:153–169. https://doi.org/10.1083/jcb.201009136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Björklund A, Kirik D, Rosenblad C et al (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model11Published on the World Wide Web on 10 October 2000. Brain Res 886:82–98. https://doi.org/10.1016/S0006-8993(00)02915-2

    Article  PubMed  Google Scholar 

  15. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  PubMed  Google Scholar 

  16. Bondarenko O, Saarma M (2021) Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front Cell Neurosci 15:682597. https://doi.org/10.3389/fncel.2021.682597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Borrello MG, Alberti L, Arighi E et al (1996) The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 16:2151–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bourque MJ, Trudeau LE (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180. https://doi.org/10.1046/j.1460-9568.2000.00219.x

    Article  CAS  PubMed  Google Scholar 

  19. Bowenkamp KE, Hoffman AF, Gerhardt GA et al (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 355:479–489. https://doi.org/10.1002/cne.903550402

    Article  CAS  PubMed  Google Scholar 

  20. Cass WA, Peters LE (2010) Neurturin effects on nigrostriatal dopamine release and content: comparison with GDNF. Neurochem Res 35:727–734. https://doi.org/10.1007/s11064-010-0128-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chmielarz P, Er Ş, Konovalova J et al (2020) GDNF/RET signaling pathway activation eliminates Lewy body pathology in midbrain dopamine neurons. Mov Disord 35:2279–2289. https://doi.org/10.1002/mds.28258

    Article  CAS  PubMed  Google Scholar 

  22. Chu Y, Bartus RT, Manfredsson FP et al (2020) Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson’s disease. Brain 143:960–975. https://doi.org/10.1093/brain/awaa020

    Article  PubMed  PubMed Central  Google Scholar 

  23. Clarkson ED, Zawada WM, Freed CR (1995) GDNF reduces apoptosis in dopaminergic neurons in vitro. NeuroReport 7:145–149

    Article  CAS  PubMed  Google Scholar 

  24. Clarkson ED, Zawada WM, Freed CR (1997) GDNF improves survival and reduces apoptosis in human embryonic dopaminergic neurons in vitro. Cell Tissue Res 289:207–210. https://doi.org/10.1007/s004410050867

    Article  CAS  PubMed  Google Scholar 

  25. Cordero-Llana Ó, Houghton BC, Rinaldi F et al (2015) Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol Ther 23:244–254. https://doi.org/10.1038/mt.2014.206

    Article  CAS  PubMed  Google Scholar 

  26. Cross BCS, Bond PJ, Sadowski PG et al (2012) The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A 109:E869-878. https://doi.org/10.1073/pnas.1115623109

    Article  PubMed  PubMed Central  Google Scholar 

  27. Crupi MJF, Yoganathan P, Bone LN et al (2015) Distinct temporal regulation of RET isoform internalization: roles of Clathrin and AP2. Traffic 16:1155–1173. https://doi.org/10.1111/tra.12315

    Article  CAS  PubMed  Google Scholar 

  28. Danilova T, Belevich I, Li H et al (2019) MANF is required for the postnatal expansion and maintenance of pancreatic β-cell mass in mice. Diabetes 68:66–80. https://doi.org/10.2337/db17-1149

    Article  CAS  PubMed  Google Scholar 

  29. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/S0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  30. De Lorenzo F, Lüningschrör P, Nam J et al (2023) CDNF rescues motor neurons in models of amyotrophic lateral sclerosis by targeting endoplasmic reticulum stress. Brain. https://doi.org/10.1093/brain/awad087

  31. Decressac M, Kadkhodaei B, Mattsson B, et al (2012) α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4:163ra156. https://doi.org/10.1126/scitranslmed.3004676

  32. deSouza R-M, Moro E, Lang AE, Schapira AHV (2013) Timing of deep brain stimulation in Parkinson disease: a need for reappraisal? Ann Neurol 73:565–575. https://doi.org/10.1002/ana.23890

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eesmaa A, Yu L-Y, Göös H et al (2022) CDNF interacts with ER chaperones and requires UPR sensors to promote neuronal survival. Int J Mol Sci 23:9489. https://doi.org/10.3390/ijms23169489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eesmaa A, Yu L-Y, Göös H et al (2021) The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem 296:100295. https://doi.org/10.1016/j.jbc.2021.100295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enomoto H, Araki T, Jackman A et al (1998) GFRα1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324. https://doi.org/10.1016/S0896-6273(00)80541-3

    Article  CAS  PubMed  Google Scholar 

  36. Enterría-Morales D, López-López I, López-Barneo J, d’Anglemont de Tassigny X (2020) Role of glial cell line-derived neurotrophic factor in the maintenance of adult mesencephalic catecholaminergic neurons. Mov Disord 35:565–576. https://doi.org/10.1002/mds.27986

    Article  CAS  PubMed  Google Scholar 

  37. Eslamboli A, Cummings RM, Ridley RM et al (2003) Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol 184:536–548. https://doi.org/10.1016/j.expneurol.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  38. Espadas-Alvarez AJ, Bannon MJ, Orozco-Barrios CE et al (2017) Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. Nanomedicine 13:1363–1375. https://doi.org/10.1016/j.nano.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  39. Fan C-H, Ting C-Y, Lin C et al (2016) Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson’s disease. Sci Rep 6:19579. https://doi.org/10.1038/srep19579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galli E, Härkönen T, Sainio MT et al (2016) Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes. Sci Rep 6:29058. https://doi.org/10.1038/srep29058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galli E, Planken A, Kadastik-Eerme L et al (2019) Increased serum levels of mesencephalic astrocyte-derived neurotrophic factor in subjects with Parkinson’s disease. Front Neurosci 13

    Google Scholar 

  42. Garea-Rodríguez E, Eesmaa A, Lindholm P et al (2016) Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of Parkinson’s disease. PLoS ONE 11:e0149776. https://doi.org/10.1371/journal.pone.0149776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gartziandia O, Herrán E, Ruiz-Ortega JA et al (2016) Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 12:2220–2280. https://doi.org/10.1166/jbn.2016.2313

    Article  CAS  PubMed  Google Scholar 

  44. Gash DM, Zhang Z, Ai Y et al (2005) Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol 58:224–233. https://doi.org/10.1002/ana.20549

    Article  CAS  PubMed  Google Scholar 

  45. Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255. https://doi.org/10.1038/380252a0

    Article  CAS  PubMed  Google Scholar 

  46. Georgievska B, Kirik D, Björklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24:6437–6445. https://doi.org/10.1523/JNEUROSCI.1122-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghosh R, Wang L, Wang ES et al (2014) Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158:534–548. https://doi.org/10.1016/j.cell.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giguère N, Burke Nanni S, Trudeau L-E (2018) On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol 9:455. https://doi.org/10.3389/fneur.2018.00455

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gill SS, Patel NK, Hotton GR et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595. https://doi.org/10.1038/nm850

    Article  CAS  PubMed  Google Scholar 

  50. Glembotski CC, Thuerauf DJ, Huang C et al (2012) Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J Biol Chem 287:25893–25904. https://doi.org/10.1074/jbc.M112.356345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Glerup S, Lume M, Olsen D et al (2013) SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET. Cell Rep 3:186–199. https://doi.org/10.1016/j.celrep.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  52. Grondin R, Cass WA, Zhang Z et al (2003) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23:1974–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hallett PJ, Deleidi M, Astradsson A et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16:269–274. https://doi.org/10.1016/j.stem.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han F, Wang W, Chen B et al (2015) Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Cytotherapy 17:665–679. https://doi.org/10.1016/j.jcyt.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  55. Hao F, Yang C, Chen S-S et al (2017) Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats. Exp Neurol 291:120–133. https://doi.org/10.1016/j.expneurol.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  56. Hayashi T, Wakao S, Kitada M et al (2013) Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Invest 123:272–284. https://doi.org/10.1172/JCI62516

    Article  CAS  PubMed  Google Scholar 

  57. Heiss JD, Lungu C, Hammoud DA et al (2019) Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord 34:1073–1078. https://doi.org/10.1002/mds.27724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hellman M, Arumäe U, Yu L et al (2011) Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem 286:2675–2680. https://doi.org/10.1074/jbc.M110.146738

    Article  CAS  PubMed  Google Scholar 

  59. Heuckeroth RO, Enomoto H, Grider JR et al (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263. https://doi.org/10.1016/s0896-6273(00)81087-9

    Article  CAS  PubMed  Google Scholar 

  60. Horger BA, Nishimura MC, Armanini MP et al (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18:4929–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsu J-Y, Crawley S, Chen M et al (2017) Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550:255–259. https://doi.org/10.1038/nature24042

    Article  CAS  PubMed  Google Scholar 

  62. Hudson J, Granholm AC, Gerhardt GA et al (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432. https://doi.org/10.1016/0361-9230(94)00224-o

    Article  CAS  PubMed  Google Scholar 

  63. Huttunen HJ, Booms S, Sjögren M et al (2023) Intraputamenal cerebral dopamine neurotrophic factor in Parkinson’s disease: a randomized, double-blind, multicenter phase 1 trial. Mov Disord 38:1209–1222. https://doi.org/10.1002/mds.29426

    Article  CAS  PubMed  Google Scholar 

  64. Hyndman BD, Crupi MJF, Peng S et al (2017) Differential recruitment of E3 ubiquitin ligase complexes regulates RET isoform internalization. J Cell Sci 130:3282–3296. https://doi.org/10.1242/jcs.203885

    Article  CAS  PubMed  Google Scholar 

  65. Jäntti M, Harvey BK (2020) The trophic activities of the endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res 382:83–100. https://doi.org/10.1007/s00441-020-03263-0

    Article  CAS  PubMed Central  Google Scholar 

  66. Jiaming M, Niu C (2015) Comparing neuroprotective effects of CDNF-expressing bone marrow derived mesenchymal stem cells via differing routes of administration utilizing an in vivo model of Parkinson’s disease. Neurol Sci 36:281–287. https://doi.org/10.1007/s10072-014-1929-8

    Article  PubMed  Google Scholar 

  67. Kells AP, Eberling J, Su X et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577. https://doi.org/10.1523/JNEUROSCI.0942-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kikuchi T, Morizane A, Doi D et al (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548:592–596. https://doi.org/10.1038/nature23664

    Article  CAS  PubMed  Google Scholar 

  69. Kirik D, Georgievska B, Björklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7:105–110. https://doi.org/10.1038/nn1175

    Article  CAS  PubMed  Google Scholar 

  70. Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882. https://doi.org/10.1046/j.1460-9568.2000.00274.x

    Article  CAS  PubMed  Google Scholar 

  71. Kirik D, Rosenblad C, Björklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700. https://doi.org/10.1523/JNEUROSCI.20-12-04686.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobori N, Waymire JC, Haycock JW et al (2004) Enhancement of tyrosine hydroxylase phosphorylation and activity by glial cell line-derived neurotrophic factor. J Biol Chem 279:2182–2191. https://doi.org/10.1074/jbc.M310734200

    Article  CAS  PubMed  Google Scholar 

  73. Kopra J, Vilenius C, Grealish S et al (2015) GDNF is not required for catecholaminergic neuron survival in vivo. Nat Neurosci 18:319–322. https://doi.org/10.1038/nn.3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kopra JJ, Panhelainen A, Bjerkén S et al (2017) Dampened amphetamine-stimulated behavior and altered dopamine transporter function in the absence of brain GDNF. J Neurosci 37:1581–1590. https://doi.org/10.1523/JNEUROSCI.1673-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773. https://doi.org/10.1126/science.290.5492.767

    Article  CAS  PubMed  Google Scholar 

  76. Kordower JH, Palfi S, Chen E-Y et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424. https://doi.org/10.1002/1531-8249(199909)46:3%3c419::AID-ANA21%3e3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  77. Kovaleva V, Yu L-Y, Ivanova L et al (2023) MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep 42:112066. https://doi.org/10.1016/j.celrep.2023.112066

    Article  CAS  PubMed  Google Scholar 

  78. Kramer ER, Aron L, Ramakers GMJ et al (2007) Absence of ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39. https://doi.org/10.1371/journal.pbio.0050039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kramer ER, Liss B (2015) GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 589:3760–3772. https://doi.org/10.1016/j.febslet.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  80. Kumar A, Kopra J, Varendi K et al (2015) GDNF Overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function. PLoS Genet 11:e1005710. https://doi.org/10.1371/journal.pgen.1005710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lang AE, Gill S, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466. https://doi.org/10.1002/ana.20737

    Article  CAS  PubMed  Google Scholar 

  82. Latge C, Cabral KMS, de Oliveira GAP et al (2015) The solution structure and dynamics of full-length human cerebral dopamine neurotrophic factor and its neuroprotective role against α-synuclein oligomers*. J Biol Chem 290:20527–20540. https://doi.org/10.1074/jbc.M115.662254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li Z, Wang B, Wu X et al (2005) Identification, expression and functional characterization of the GRAL gene. J Neurochem 95:361–376. https://doi.org/10.1111/j.1471-4159.2005.03372.x

    Article  CAS  PubMed  Google Scholar 

  84. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132. https://doi.org/10.1126/science.8493557

    Article  CAS  PubMed  Google Scholar 

  85. Lindahl M, Chalazonitis A, Palm E et al (2020) Cerebral dopamine neurotrophic factor–deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiol Dis 134:104696. https://doi.org/10.1016/j.nbd.2019.104696

    Article  CAS  PubMed  Google Scholar 

  86. Lindahl M, Danilova T, Palm E et al (2014) MANF is indispensable for the proliferation and survival of pancreatic β cells. Cell Rep 7:366–375. https://doi.org/10.1016/j.celrep.2014.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lindgren N, Francardo V, Quintino L et al (2012) A model of GDNF gene therapy in mice with 6-Hydroxydopamine lesions: time course of neurorestorative effects and ERK1/2 activation. J Parkinsons Dis 2:333–348. https://doi.org/10.3233/JPD-012146

    Article  CAS  PubMed  Google Scholar 

  88. Lindholm P, Saarma M (2022) Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism. Mol Psychiatry 27:1310–1321. https://doi.org/10.1038/s41380-021-01394-6

    Article  CAS  PubMed  Google Scholar 

  89. Lindholm P, Saarma M (2010) Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 70:360–371. https://doi.org/10.1002/dneu.20760

    Article  CAS  PubMed  Google Scholar 

  90. Lindholm P, Voutilainen MH, Laurén J et al (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448:73–77. https://doi.org/10.1038/nature05957

    Article  CAS  PubMed  Google Scholar 

  91. Lindvall O (2013) Developing dopaminergic cell therapy for Parkinson’s disease—give up or move forward? Mov Disord 28:268–273. https://doi.org/10.1002/mds.25378

    Article  CAS  PubMed  Google Scholar 

  92. Liu Y, Zhang J, Jiang M et al (2018) MANF improves the MPP+/MPTP-induced Parkinson’s disease via improvement of mitochondrial function and inhibition of oxidative stress. Am J Transl Res 10:1284–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lo Bianco C, Déglon N, Pralong W, Aebischer P (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17:283–289. https://doi.org/10.1016/j.nbd.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  94. Lonka-Nevalaita L, Lume M, Leppanen S et al (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J Neurosci 30:11403–11413. https://doi.org/10.1523/JNEUROSCI.5888-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mahato AK, Kopra J, Renko J-M et al (2020) Glial cell line-derived neurotrophic factor receptor rearranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release in vivo. Mov Disord 35:245–255. https://doi.org/10.1002/mds.27943

    Article  CAS  PubMed  Google Scholar 

  96. Mahato AK, Sidorova YA (2020) RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci 21:7108. https://doi.org/10.3390/ijms21197108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mahato AK, Sidorova YA (2020) Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson’s disease. Cell Tissue Res 382:147–160. https://doi.org/10.1007/s00441-020-03227-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Manfredsson FP, Polinski NK, Subramanian T et al (2020) The future of GDNF in Parkinson’s disease. Front Aging Neurosci 12:593572. https://doi.org/10.3389/fnagi.2020.593572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marks WJ, Bartus RT, Siffert J et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. The Lancet Neurol 9:1164–1172. https://doi.org/10.1016/S1474-4422(10)70254-4

    Article  CAS  PubMed  Google Scholar 

  100. Marks WJ, Ostrem JL, Verhagen L et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. The Lancet Neurol 7:400–408. https://doi.org/10.1016/S1474-4422(08)70065-6

    Article  PubMed  Google Scholar 

  101. Menon S, Armstrong S, Hamzeh A et al (2022) Alpha-synuclein targeting therapeutics for Parkinson’s disease and related synucleinopathies. Front Neurol 13:852003. https://doi.org/10.3389/fneur.2022.852003

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moore MW, Klein RD, Fariñas I et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79. https://doi.org/10.1038/382076a0

    Article  CAS  PubMed  Google Scholar 

  103. Nadella R, Voutilainen MH, Saarma M et al (2014) Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J Neuroinflammation 11:209. https://doi.org/10.1186/s12974-014-0209-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nutt JG, Burchiel KJ, Comella CL et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73. https://doi.org/10.1212/wnl.60.1.69

    Article  CAS  PubMed  Google Scholar 

  105. Othberg A, Odin P, Ballagi A et al (1995) Specific effects of platelet derived growth factor (PDGF) on fetal rat and human dopaminergic neurons in vitro. Exp Brain Res 105:111–122. https://doi.org/10.1007/BF00242187

    Article  CAS  PubMed  Google Scholar 

  106. Pakarinen E, Danilova T, Võikar V, et al (2020) MANF ablation causes prolonged activation of the UPR without neurodegeneration in the mouse midbrain dopamine system. eNeuro 7:ENEURO.0477-19.2019. https://doi.org/10.1523/ENEURO.0477-19.2019

  107. Pakarinen E, Lindholm P, Saarma M, Lindahl M (2022) CDNF and MANF regulate ER stress in a tissue-specific manner. Cell Mol Life Sci 79:124. https://doi.org/10.1007/s00018-022-04157-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Palgi M, Lindström R, Peränen J et al (2009) Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proc Natl Acad Sci U S A 106:2429–2434. https://doi.org/10.1073/pnas.0810996106

    Article  PubMed  PubMed Central  Google Scholar 

  109. Paratcha G, Ledda F, Baars L et al (2001) Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-ret to lipid rafts. Neuron 29:171–184. https://doi.org/10.1016/S0896-6273(01)00188-X

    Article  CAS  PubMed  Google Scholar 

  110. Paratcha G, Ledda F, Ibáñez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867–879. https://doi.org/10.1016/S0092-8674(03)00435-5

    Article  CAS  PubMed  Google Scholar 

  111. Parkash V, Lindholm P, Peränen J et al (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng Des Sel 22:233–241. https://doi.org/10.1093/protein/gzn080

    Article  CAS  PubMed  Google Scholar 

  112. Pascual A, Hidalgo-Figueroa M, Piruat JI et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761. https://doi.org/10.1038/nn.2136

    Article  CAS  PubMed  Google Scholar 

  113. Paul G, Zachrisson O, Varrone A et al (2015) Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest 125:1339–1346. https://doi.org/10.1172/JCI79635

    Article  PubMed  PubMed Central  Google Scholar 

  114. Petrova P, Raibekas A, Pevsner J et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20:173–188. https://doi.org/10.1385/jmn:20:2:173

    Article  CAS  PubMed  Google Scholar 

  115. Pfeiffer RF (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S119-122. https://doi.org/10.1016/j.parkreldis.2015.09.004

    Article  PubMed  Google Scholar 

  116. Piccinini E, Kalkkinen N, Saarma M, Runeberg-Roos P (2013) Glial cell line-derived neurotrophic factor: characterization of mammalian posttranslational modifications. Ann Med 45:66–73. https://doi.org/10.3109/07853890.2012.663927

    Article  CAS  PubMed  Google Scholar 

  117. Pichel JG, Shen L, Sheng HZ et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76. https://doi.org/10.1038/382073a0

    Article  CAS  PubMed  Google Scholar 

  118. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:1–21. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  119. Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118. https://doi.org/10.1523/JNEUROSCI.18-11-04106.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pruett BS, Salvatore MF (2013) Nigral GFRα1 infusion in aged rats increases locomotor activity, nigral tyrosine hydroxylase, and dopamine content in synchronicity. Mol Neurobiol 47:988–999. https://doi.org/10.1007/s12035-013-8397-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rana AQ, Ahmed US, Chaudry ZM, Vasan S (2015) Parkinson’s disease: a review of non-motor symptoms. Expert Rev Neurother 15:549–562. https://doi.org/10.1586/14737175.2015.1038244

    Article  CAS  PubMed  Google Scholar 

  122. Ren X, Zhang T, Gong X et al (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol 248:148–156. https://doi.org/10.1016/j.expneurol.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  123. Renko J-M, Mahato AK, Visnapuu T et al (2021) Neuroprotective potential of a small molecule RET agonist in cultured dopamine neurons and hemiparkinsonian rats. J Parkinsons Dis 11:1023–1046. https://doi.org/10.3233/JPD-202400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rossi J, Luukko K, Poteryaev D et al (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFRα2, a functional neurturin receptor. Neuron 22:243–252. https://doi.org/10.1016/S0896-6273(00)81086-7

    Article  CAS  PubMed  Google Scholar 

  125. Runeberg-Roos P, Piccinini E, Penttinen A-M et al (2016) Developing therapeutically more efficient neurturin variants for treatment of Parkinson’s disease. Neurobiol Dis 96:335–345. https://doi.org/10.1016/j.nbd.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  126. Saarenpää T, Kogan K, Sidorova Y et al (2017) Zebrafish GDNF and its co-receptor GFRα1 activate the human RET receptor and promote the survival of dopaminergic neurons in vitro. PLoS ONE 12:e0176166. https://doi.org/10.1371/journal.pone.0176166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saarma M, Voutilainen MH, Airavaara M et al. (2018) C-terminal CDNF and MANF fragments, pharmaceutical compositions comprising same and uses thereof. United States Patent Application No 17/043028; Publication Date: 01/14/2021 Filing Date: 03/29/2019

    Google Scholar 

  128. Salvatore MF, Ai Y, Fischer B et al (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202:497–505. https://doi.org/10.1016/j.expneurol.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  129. Salvatore MF, Zhang J-L, Large DM et al (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90:245–254. https://doi.org/10.1111/j.1471-4159.2004.02496.x

    Article  CAS  PubMed  Google Scholar 

  130. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435–450. https://doi.org/10.1038/nrn.2017.62

    Article  CAS  PubMed  Google Scholar 

  131. Schuchardt A, D’Agati V, Larsson-Blomberg L et al (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383. https://doi.org/10.1038/367380a0

    Article  CAS  PubMed  Google Scholar 

  132. Shahmoradian SH, Lewis AJ, Genoud C et al (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22:1099–1109. https://doi.org/10.1038/s41593-019-0423-2

    Article  CAS  PubMed  Google Scholar 

  133. Shults CW (2006) Lewy bodies. PNAS 103:1661–1668. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Siderowf A, Concha-Marambio L, Lafontant D-E et al (2023) Assessment of heterogeneity among participants in the Parkinson’s progression markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. The Lancet Neurology 22:407–417. https://doi.org/10.1016/S1474-4422(23)00109-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sidorova YA, Saarma M (2020) Can growth factors cure Parkinson’s disease? Trends Pharmacol Sci 41:909–922. https://doi.org/10.1016/j.tips.2020.09.010

    Article  CAS  PubMed  Google Scholar 

  136. Slevin JT, Gash DM, Smith CD et al (2007) Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg 106:614–620. https://doi.org/10.3171/jns.2007.106.4.614

    Article  CAS  PubMed  Google Scholar 

  137. Slevin JT, Gerhardt GA, Smith CD et al (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222. https://doi.org/10.3171/jns.2005.102.2.0216

    Article  CAS  PubMed  Google Scholar 

  138. Smith AD, Kozlowski DA, Bohn MC, Zigmond MJ (2005) Effect of AdGDNF on dopaminergic neurotransmission in the striatum of 6-OHDA-treated rats. Exp Neurol 193:420–426. https://doi.org/10.1016/j.expneurol.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  139. Subramanian K (2013) Restoration of motor and non-motor functions by neurotrophic factors in nonhuman primates with dopamine depletion. Doctoral Dissertation, University of Pittsburgh. http://d-scholarship.pitt.edu/20301/

  140. Takahashi J (2020) IPS cell-based therapy for Parkinson’s disease: a Kyoto trial. Regen Ther 13:18–22. https://doi.org/10.1016/j.reth.2020.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tanaka Y, Takenouchi T, Tsukimoto M (2020) Mesencephalic astrocyte-derived neurotrophic factor is a novel radioresistance factor in mouse B16 melanoma. Biochem Biophys Res Commun 524:869–875. https://doi.org/10.1016/j.bbrc.2020.01.167

    Article  CAS  PubMed  Google Scholar 

  142. Tansey MG, Baloh RH, Milbrandt J, Johnson EM (2000) GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25:611–623. https://doi.org/10.1016/S0896-6273(00)81064-8

    Article  CAS  PubMed  Google Scholar 

  143. Tomac A, Widenfalk J, Lin L-FH et al (1995) Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA 92:8274–8278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tomac AC, Grinberg A, Huang SP et al (1999) Glial cell line-derived neurotrophic factor receptor α1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles. Neurosci 95:1011–1023. https://doi.org/10.1016/S0306-4522(99)00503-5

    Article  Google Scholar 

  145. Tong S-Y, Wang R-W, Li Q et al (2023) Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson’s disease. Front Neurosci 17:1136499. https://doi.org/10.3389/fnins.2023.1136499

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tseng K-Y, Stratoulias V, Hu W-F et al (2023) Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage. Cell Death Dis 14:1–20. https://doi.org/10.1038/s41419-022-05520-2

    Article  CAS  Google Scholar 

  147. Tsui CC, Pierchala BA (2010) The differential axonal degradation of Ret accounts for cell-type-specific function of glial cell line-derived neurotrophic factor as a retrograde survival factor. J Neurosci 30:5149–5158. https://doi.org/10.1523/JNEUROSCI.5246-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Turconi G, Kopra J, Võikar V et al (2020) Chronic 2-fold elevation of endogenous GDNF levels is safe and enhances motor and dopaminergic function in aged mice. Mol Ther Methods Clin Dev 17:831–842. https://doi.org/10.1016/j.omtm.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vieira P, Thomas-Crusells J, Vieira A (2003) Internalization of glial cell-derived neurotrophic factor receptor GFRα1 in the absence of the ret tyrosine kinase coreceptor. Cell Mol Neurobiol 23:43–55. https://doi.org/10.1023/A:1022593001155

    Article  CAS  PubMed  Google Scholar 

  150. Voutilainen MH, Bäck S, Peränen J et al (2011) Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp Neurol 228:99–108. https://doi.org/10.1016/j.expneurol.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  151. Voutilainen MH, Bäck S, Pörsti E et al (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 29:9651–9659. https://doi.org/10.1523/JNEUROSCI.0833-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Voutilainen MH, De Lorenzo F, Stepanova P et al (2017) Evidence for an Additive Neurorestorative Effect of Simultaneously Administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action. eNeuro 4:ENEURO.0117-16.2017. https://doi.org/10.1523/ENEURO.0117-16.2017

  153. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  154. Wang L, Wang Z, Zhu R et al (2017) Therapeutic efficacy of AAV8-mediated intrastriatal delivery of human cerebral dopamine neurotrophic factor in 6-OHDA-induced parkinsonian rat models with different disease progression. PLoS ONE 12:e0179476. https://doi.org/10.1371/journal.pone.0179476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Warren Olanow C, Bartus RT, Baumann TL et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. Ann Neurol 78:248–257. https://doi.org/10.1002/ana.24436

    Article  CAS  PubMed  Google Scholar 

  156. Whone A, Luz M, Boca M et al (2019) Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 142:512–525. https://doi.org/10.1093/brain/awz023

    Article  PubMed  PubMed Central  Google Scholar 

  157. Whone AL, Boca M, Luz M et al (2019) Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease. J Parkinsons Dis 9:301–313. https://doi.org/10.3233/JPD-191576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yagi T, Asada R, Kanekura K et al (2020) Neuroplastin modulates anti-inflammatory effects of MANF. iScience 23:101810. https://doi.org/10.1016/j.isci.2020.101810

  159. Yan Y, Rato C, Rohland L et al (2019) MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun 10:541. https://doi.org/10.1038/s41467-019-08450-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yu L-Y, Selberg S, Teino I et al (2023) Small molecule activation of m6A mRNA methylation as a novel approach for neuroprotection. 2023.07.05.547860

    Google Scholar 

  161. Zachrisson O, Zhao M, Andersson A et al (2011) Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. J Parkinsons Dis 1:49–63. https://doi.org/10.3233/JPD-2011-0003

    Article  PubMed  Google Scholar 

  162. Zahavi EE, Ionescu A, Gluska S et al (2015) A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. J Cell Sci 128:1241–1252. https://doi.org/10.1242/jcs.167544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang Y, Xiang Y, Wang X et al (2019) Cerebral dopamine neurotrophic factor protects microglia by combining with AKT and by regulating FoxO1/mTOR signaling during neuroinflammation. Biomed Pharma 109:2278–2284. https://doi.org/10.1016/j.biopha.2018.11.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Päivi Lindholm-Pulkkila and Vera Kovaleva for their valuable comments on the manuscript. This work was supported by Jane and Aatos Erkko Foundation, Sigrid Juselius Foundation, Academy of Finland (grant number 1343299) and Enterprise Estonia. Figures 4.1 and 4.2 were created with BioRender.

Disclaimer Statement

MS is a founder and shareholder at Herantis Pharma Plc. MS and AKM report unrelated research support from the GeneCode Ltd. and ArgoBio Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mart Saarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahato, A.K., Saarma, M. (2024). Neurotrophic Factors in Parkinson’s Disease: Clinical Trials. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Regenerative Medicine and Brain Repair. Stem Cell Biology and Regenerative Medicine, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-031-49744-5_4

Download citation

Publish with us

Policies and ethics