Skip to main content

Online Facility Assignment for General Layout of Servers on a Line

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Abstract

In the online facility assignment on a line \(\textrm{OFAL}(S,c)\) with a set S of k servers and a capacity \(c:S\rightarrow \mathbb {N}\), each server \(s\in S\) with a capacity c(s) is placed on a line, and a request arrives on a line one-by-one. The task of an online algorithm is to irrevocably match a current request with one of the servers with vacancies before the next request arrives. An algorithm can match up to c(s) requests to a server \(s\in S\). In this paper, we propose a new online algorithm PTCP (Policy Transition at Critical Point) for OFAL(Sc) and show that PTCP is \((2\alpha (S)+1)\)-competitive, where \(\alpha (S)\) is informally the ratio of the diameter of S to the maximum distance between two adjacent servers in S. Depending on the layout of servers, \(\alpha (S)\) ranges from O(1) to O(k). Among all of known algorithms for OFAL(Sc), this upper bound on the competitive ratio is the best when \(\alpha (S)\) is small. We also show that the competitive ratio of any MPFS (Most Preferred Free Servers) algorithm [6] is at least \(2\alpha (S)+1\), where MPFS is a class of algorithms whose competitive ratio does not depend on a capacity c. Recall that the class MPFS includes the natural greedy algorithm and PTCP, etc. Thus, this implies that PTCP is the best for OFAL(Sc) in the class MPFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the number of surrounding servers of \(r_i\) is one, then s is one of the free servers which is just to the left/right of \(s_{\mathcal {A}}(r_i;\sigma )\).

  2. 2.

    One of the optimal matchings is obtained by matching i-th request from the left with i-th server from the left for \(i=1,\ldots ,k\).

References

  1. Ahmed, A.R., Rahman, M.S., Kobourov, S.: Online facility assignment. Theor. Comput. Sci. 806, 455–467 (2020)

    Article  MathSciNet  Google Scholar 

  2. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online matching on the line. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 52–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_5

    Chapter  Google Scholar 

  3. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log2k)-Competitive Algorithm for Metric Bipartite Matching. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 522–533. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_47

    Chapter  Google Scholar 

  4. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: on the exponential boost of one extra server. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 228–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_20

    Chapter  Google Scholar 

  5. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_36

    Chapter  Google Scholar 

  6. Harada, T., Itoh, T., Miyazaki, S.: Capacity-insensitive algorithms for online facility assignment problems on a line. online ready in discrete mathematics, algorithms and applications (2023)

    Google Scholar 

  7. Itoh, T., Miyazaki, S., Satake, M.: Competitive analysis for two variants of online metric matching problem. Discrete Math. Algorithms Appl. 13(06), 2150156 (2021)

    Article  MathSciNet  Google Scholar 

  8. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993)

    Article  MathSciNet  Google Scholar 

  9. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 268–280. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029573

    Chapter  Google Scholar 

  10. Kalyanasundaram, B., Pruhs, K.R.: The online transportation problem. SIAM J. Discret. Math. 13(3), 370–383 (2000)

    Article  MathSciNet  Google Scholar 

  11. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

    Article  MathSciNet  Google Scholar 

  12. Peserico, E., Scquizzato, M.: Matching on the line admits no \(o(\sqrt{\log n})\)-competitive algorithm. ACM Trans. Algorithms 19(3), 1–4 (2023)

    Article  MathSciNet  Google Scholar 

  13. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  14. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a line. In: 34th International Symposium on Computational Geometry (SoCG 2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harada, T., Itoh, T. (2024). Online Facility Assignment for General Layout of Servers on a Line. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics