Skip to main content

Proximal Fibular Osteotomy Versus High Tibial Osteotomy: An In-silico Finite Element Study

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

Typical treatments against knee osteoarthritis (KOA) are performed surgically, such as knee arthroplasty or high tibial osteotomy (HTO). In recent years, Proximal Fibular Osteotomy (PFO) has been proposed as a solution against KOA. The biomechanical understanding of the effects of PFOs is herein investigated. The present study provides the fundamental data for the biomechanical description of this surgical technique, which has been numerically evaluated with finite element models against the HTO reversed-engineered in-silico model. PFO finite element models are digitally compared to in-vivo HTO surgical outcomes in their pre- and post-surgical state. The compliance between simulation and practical surgery outcomes could be improved using the subject end-results to iterate and customize the PFO in-silico model. Opportunities, procedures and restrictions of in-silico models are presented. In-silico approaches may lead the medical community to move faster, more confidently and more cost-effectively toward research discoveries than using traditional in-vitro and in-vivo approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affatato, S.: Biomechanics of the Knee. Woodhead Publishing Limited (2015). https://doi.org/10.1533/9781782420385.1.17

  2. Åkesson, K.E., et al.: Advances in delivery of health care for MSK conditions. Best Pract. Res.: Clin. Rheumatol. 34(5) (2020). https://doi.org/10.1016/j.berh.2020.101597

  3. Amis, A.A.: Biomechanics of high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 21(1), 197–205 (2013). https://doi.org/10.1007/s00167-012-2122-3

    Article  Google Scholar 

  4. Briggs, A.M., Shiffman, J., Shawar, Y.R., Åkesson, K., Ali, N., Woolf, A, D.: Global health policy in the 21st century: challenges and opportunities to arrest the global disability burden from musculoskeletal health conditions. Best Pract. Res.: Clin. Rheumatol. 34(5), 101549 (2020). https://doi.org/10.1016/j.berh.2020.101549

  5. Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., Lu, H.: Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 29–30, 100587 (2020). https://doi.org/10.1016/j.eclinm.2020.100587

  6. Demirhan Demirkırana, N., Bugra Husemoglu, R.: Finite element analysis of unicondylar knee arthroplasty combined with proximal fibular osteotomy. J. Med. Innov. Technol. 2(2), 121–126 (2020)

    Google Scholar 

  7. Diffo Kaze, A., Maas, S., Arnoux, P.J., Wolf, C., Pape, D.: A finite element model of the lower limb during stance phase of gait cycle including the muscle forces. Biomed. Eng. Online 16(1), 138 (2017). https://doi.org/10.1186/s12938-017-0428-6

  8. Farr, J., II., Miller, L.E., Block, J.E.: Quality of life in patients with knee osteoarthritis: a commentary on nonsurgical and surgical treatments. Open Orthop. J. 7(1), 619–623 (2013). https://doi.org/10.2174/1874325001307010619

    Article  Google Scholar 

  9. Fat, D.L., Kennedy, J., Galvin, R., O’Brien, F., Grath, F.M., Mullett, H.: The Hounsfield value for cortical bone geometry in the proximal humerus—an in vitro study. Skeletal Radiol. 41(5), 557–568 (2012). https://doi.org/10.1007/s00256-011-1255-7

    Article  Google Scholar 

  10. Fernandes, D.J.C.: Finite Element Analysis of the ACL-deficient Knee Biomedical Engineering (2014)

    Google Scholar 

  11. Guess, T.M., Thiagarajan, G., Kia, M., Mishra, M.: A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 32(5), 505–515 (2010). https://doi.org/10.1016/j.medengphy.2010.02.020

  12. Hicks, J.L., Uchida, T.K., Seth, A., Rajagopal, A., Delp, S.L.: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137(2), 1–24 (2015). https://doi.org/10.1115/1.4029304

    Article  Google Scholar 

  13. Huang, H., et al.: Is high tibial osteotomy better than proximal fibula osteotomy for treating knee osteoarthritis? A protocol for a systematic review and meta-analysis of clinical controlled trials. Medicine (United States) 99(4), 4–7 (2020). https://doi.org/10.1097/MD.0000000000018910

  14. Łuczkiewicz, P., Daszkiewicz, K., Chróścielewski, J., Witkowski, W., Winklewski, P.J.: The influence of articular cartilage thickness reduction on meniscus biomechanics. PLoS ONE 11(12), 1–13 (2016). https://doi.org/10.1371/journal.pone.0167733

    Article  Google Scholar 

  15. MacLeod, A.R., Serrancoli, G., Fregly, B.J., Toms, A.D., Gill, H.S.: The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates an experimental and finite element study. Bone Joint Res. 7(12), 639–649 (2018). https://doi.org/10.1302/2046-3758.712.BJR-2018-0035.R1

    Article  Google Scholar 

  16. Manns, M., Morales, J., Frohn, P.: Additive manufacturing of silicon based PneuNets as soft robotic actuators. Procedia CIRP 72, 328–333 (2018). https://doi.org/10.1016/j.procir.2018.03.186

  17. Miura, S., et al.: Stress on the posteromedial region of the proximal tibia increased over time after anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 30(5), 1744–1751 (2021). https://doi.org/10.1007/s00167-021-06731-4

  18. Murphy, L.E.A.: Lifetime risk of symptomatic knee osteoarthritis. Physiol. Behav. 176(5), 139–148 (2017). https://doi.org/10.1002/art.24021.Lifetime

  19. Pan, D., et al.: Effects of proximal fibular osteotomy on stress changes in mild knee osteoarthritis with varus deformity: a finite element analysis. J. Orthop. Surg. Res. 15(1), 1–10 (2020). https://doi.org/10.1186/s13018-020-01894-1

  20. Peña, E., Calvo, B., Doblaré, M., Calvo C, B., Doblaré Castellano, M., Peña Baquedano, E.: Biomecánica de la articulación de la rodilla tras lesiones ligamentosas. Revista Internacional de Metodos Numericos Para Calculo y Diseno en Ingenieria 22(1), 63–78 (2006)

    Google Scholar 

  21. Perelli, S., Morales-Avalos, R., Masferrer-Pino, A., Monllau, J.C.: Anatomy of lateral meniscus. Ann. Joint 7, 16–16 (2022). https://doi.org/10.21037/aoj-20-118

  22. Rai, A.K., Saurabh, A., Shekhar, S., Kunwar, A., Verma, V.: Proximal fibular osteotomy for pain relief and functional improvement in patients of osteoarthritis of knee. Int. Surg. J. 6(7), 2368 (2019). https://doi.org/10.18203/2349-2902.isj20192957

  23. Tarnita, D.I., Marius, M.C., Tarnita, D.: Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures. Mech. Mach. Sci. 20, vii–viii (2014). https://doi.org/10.1007/978-3-319-05431-5

  24. Trad, Z., Barkaoui, A., Chafra, M., Tavares, J.M.: Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc. Inst. Mech. Eng. [H] 232(6), 553–564 (2018). https://doi.org/10.1177/0954411918770706

    Article  Google Scholar 

  25. Trad, Z., Barkaoui, A., Chafra, M., Tavares, J.M.R.: FEM Analysis of the Human Knee Joint. Springer (2018)

    Google Scholar 

  26. Unal, O.K., Dagtas, M.Z., Demir, C., Najafov, T., Ugutmen, E.: The effects of proximal fibular osteotomy on the knee and ankle joints: a finite element analysis. Acta Chir. Orthop. Traumatol. Cech. 88(4), 313–320 (2021)

    Article  Google Scholar 

  27. Vaish, A., Sicot, D., Kumar Kathiriya, Y., Ortho, D., Vaishya, R., Ortho, M.: A critical review of proximal fibular osteotomy for knee osteoarthritis. Tech. Rep. 5 (2019)

    Google Scholar 

  28. Wang, X., et al.: Proximal fibular osteotomy: a new surgery for pain relief and improvement of joint function in patients with knee osteoarthritis. J. Int. Med. Res. 45(1), 282–289 (2017). https://doi.org/10.1177/0300060516676630

  29. Wang, Y., Fan, Y., Zhang, M.: Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med. Eng. Phys. 36(4), 439–447 (2014). https://doi.org/10.1016/j.medengphy.2014.01.004

    Article  Google Scholar 

  30. Wilson, S., Hausselle, J., Guess, T.M., Gonzalez, R.V.: Rigid-body modeling of knee cartilage and meniscus using experimental pressure-strain curves. Comput. Methods Biomech. Biomed. Eng. 22(6), 574–584 (2019). https://doi.org/10.1080/10255842.2019.1569639

  31. Zhang, Y.Z.: Innovations in orthopedics and traumatology in China (2015). https://doi.org/10.4103/0366-6999.168015

Download references

Acknowledgements

This work was supported by Serra Húnter Programme (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Eduardo Morales-Avalos .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales-Avalos, J.E., Morales-Avalos, R., Perelli, S., Monllau, J.C., Egea, A.J.S., Masferrer, G.S. (2024). Proximal Fibular Osteotomy Versus High Tibial Osteotomy: An In-silico Finite Element Study. In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-031-49407-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49407-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49406-2

  • Online ISBN: 978-3-031-49407-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics