Skip to main content

Cycling Lower-Limb Movement Analysis and Decoding by LSTM for a Motor Imagery-Based FES Rehabilitation System—A SCI Patient Case Study

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

Spinal cord injury (SCI) is a severe neurological impairment that affects motor and physiologic functions and consequently the health and quality of life of affected people. Then, motor function restoration is a priority for these individuals and a challenge for researchers and clinicians. This work presents an SCI case study, aiming to decode and analyze cyclic lower-limb movement by applying Long-Short Term Memory (LSTM) on electroencephalograms (EEG) and Inertial measurement unit (IMU) sensor. The results showed that EEG decoding from voluntary and involuntary movement with kinesthetic motor imagery (KMI) achieved Pearson’s correlation value of 0.6, and \(R^2\) score of 0.36 for involuntary movement produced by functional electrical stimulation (FES) while the SCI individual also performed KMI. We observed that brain regions around Cz related to lower-limbs were excited in the SCI individual when he received FES to produce involuntary movements, and simultaneously performed KMI tracking his legs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., et al.: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237), 906–910 (2015)

    Article  Google Scholar 

  2. Avanzino, L., Gueugneau, N., Bisio, A., Ruggeri, P., Papaxanthis, C., Bove, M.: Motor cortical plasticity induced by motor learning through mental practice. Front. Behav. Neurosci. 9, 105 (2015)

    Article  Google Scholar 

  3. Chipchase, L.S., Schabrun, S.M., Hodges, P.W.: Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin. Neurophysiol. 122(3), 456–463 (2011)

    Google Scholar 

  4. De Almeida, T.F., Borges, L.H.B., de Azevedo Dantas, A.F.O.: Development of an IoT electrostimulator with closed-loop control. Sensors 22(9), 3551 (2022)

    Google Scholar 

  5. Donati, A.R.C., Shokur, S., Morya, E., Campos, D.S.F., Moioli, R.C., Gitti, Augusto, P.B., Tripodi, S., Pires, GislaineC.G., Pereira, A., et al.: Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6(1), 1–16 (2016)

    Google Scholar 

  6. Enzinger, C., Ropele, S., Fazekas, F., Loitfelder, M., Gorani, F., Seifert, T., Reiter, G., Neuper, C., Pfurtscheller, G., Müller-Putz, G.: Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training. Exp. Brain Res. 190(2), 215–223 (2008)

    Article  Google Scholar 

  7. Ferrero, L., Ortíz, M., Quiles, V., Iáñez, E., Azorín, J.M.: Improving motor imagery of gait on a brain–computer interface by means of virtual reality: a case of study. IEEE Access 9, 49121–49130 (2021)

    Google Scholar 

  8. Hashimoto, Y., Ushiba, J.: EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. 124(11), 2153–2160 (2013)

    Article  Google Scholar 

  9. He, Y., Eguren, D., Azorín, J.M., Grossman, R.G., Luu, T.P., Contreras-Vidal, J.L.: Brain–machine interfaces for controlling lower-limb powered robotic systems. J. Neural Eng. 15(2), 021004 (2018)

    Google Scholar 

  10. Mateo, S., Di Rienzo, F., Bergeron, V., Guillot, A., Collet, C., Rode, G.: Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury. Front. Behav. Neurosci. 9, 234 (2015)

    Article  Google Scholar 

  11. Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J.T., Niazi, I.K., Kostic, V., Pavlovic, A., Radovanovic, S., Djuric-Jovicic, M., Agosta, F., Dremstrup, K., et al.: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 115(3), 1410–1421 (2016)

    Google Scholar 

  12. Müller-Putz, G.R., Daly, I., Kaiser, V.: Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy. J. Neural Eng. 11(3), 035011 (2014)

    Google Scholar 

  13. Nakagome, S., Luu, T.P., He, Y., Ravindran, A.S., Contreras-Vidal, J.L.: An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding. Sci. Rep. 10(1), 1–17 (2020)

    Google Scholar 

  14. Nakatani, S., Araki, N., Hoshino, T., Fukayama, O., Mabuchi, K.: Brain-controlled cycling system for rehabilitation following paraplegia with delay-time prediction. J. Neural Eng. 18(1), 016022 (2021)

    Article  Google Scholar 

  15. Opsommer, E., Chevalley, O., Korogod, N.: Motor imagery for pain and motor function after spinal cord injury: a systematic review. Spinal Cord 58(3), 262–274 (2020)

    Article  Google Scholar 

  16. Popovic, D.B., Popovic, M.B.: Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2146–2149. IEEE (2006)

    Google Scholar 

  17. Romero-Laiseca, M.A., Delisle-Rodriguez, D., Cardoso, V., Gurve, D., Loterio, F., Nascimento, J.H.P., Krishnan, S., Frizera-Neto, A., Bastos-Filho, T.: A low-cost lower-limb brain-machine interface triggered by pedaling motor imagery for post-stroke patients rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 28(4), 988–996 (2020)

    Google Scholar 

  18. Storzer, L., Butz, M., Hirschmann, J., Abbasi, O., Gratkowski, M., Saupe, D., Schnitzler, A., Dalal, S.S.: Bicycling and walking are associated with different cortical oscillatory dynamics. Front. Human Neurosci. 10, 61 (2016)

    Google Scholar 

  19. Tederko, P., Middleton, J., Mycielski, J., Joseph, C., Pagliacci, M.C., Rapidi, C.-A., Tarnacka, B., Kujawa, J.: Relationship between level of economic development, age, and etiology of spinal cord injury: a cross-sectional survey from 22 countries. Arch. Phys. Med. Rehabil. 102(10), 1947–1958 (2021)

    Google Scholar 

  20. Tortora, S., Ghidoni, S., Chisari, C., Micera, S., Artoni, F.: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. J. Neural Eng. 17(4), 046011 (2020)

    Article  Google Scholar 

  21. van der Scheer, J.W., Goosey-Tolfrey, V.L., Valentino, S.E., Davis, G.M., Ho, C.H.: Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J. Neuroeng. Rehabil. 18(1), 1–16 (2021)

    Google Scholar 

  22. Wang, J., Wang, W., Hou, Z.-G.: Toward improving engagement in neural rehabilitation: attention enhancement based on brain-computer interface and audiovisual feedback. IEEE Trans. Cogn. Dev. Syst. 12(4), 787–796 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES-Finance Code 001, CNPq, Ministry of Education, and Santos Dumont Institute from Brazil. Authors would like to thank CAPES and CNPq for scholarships, as well as the SCI patient of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Delisle-Rodriguez .

Editor information

Editors and Affiliations

Ethics declarations

Statement of Informed Consent

Informed consent was obtained from the subject involved in the study. Written informed consent has been obtained from the subject to publish this paper.

Statement of Human and Animal Rights

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Santos Dumont Institute (protocol code C.A.A.E: 53127921.2.0000.0129 approved in 12/23/2021).

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertucci, L.H., do Espirito Santo, C.C., Spinelli, B.G., Rodrigues, A.C., de Oliveira Dantas, A.F.A., Delisle-Rodriguez, D. (2024). Cycling Lower-Limb Movement Analysis and Decoding by LSTM for a Motor Imagery-Based FES Rehabilitation System—A SCI Patient Case Study. In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-031-49407-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49407-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49406-2

  • Online ISBN: 978-3-031-49407-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics