Skip to main content

Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

In a right-angle crossing (RAC) drawing of a graph, each edge is represented as a polyline and edge crossings must occur at an angle of exactly \(90^\circ \), where the number of bends on such polylines is typically restricted in some way. While structural and topological properties of RAC drawings have been the focus of extensive research, little was known about the boundaries of tractability for computing such drawings. In this paper, we initiate the study of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph G with at most b bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of G, or b plus the vertex cover number of G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs with one bend per edge. Theor. Comput. Sci. 828–829, 42–54 (2020). https://doi.org/10.1016/j.tcs.2020.04.018

    Article  MathSciNet  Google Scholar 

  2. Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M.: RAC drawings of graphs with low degree. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22–26, 2022, Vienna, Austria. LIPIcs, vol. 241, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.11

  3. Angelini, P., et al.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011). https://doi.org/10.7155/jgaa.00217

    Article  MathSciNet  Google Scholar 

  4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is np-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.7155/jgaa.00274

    Article  MathSciNet  Google Scholar 

  5. Balko, M., et al.: Bounding and computing obstacle numbers of graphs. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, September 5–9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 11:1–11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ESA.2022.11

  6. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.00457

    Article  MathSciNet  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic geometry, Algorithms and Computation in Mathematics, vol. 10. Springer, Cham (2006). https://doi.org/10.1007/3-540-33099-2, http://link.springer.com/10.1007/3-540-33099-2

  8. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017). https://doi.org/10.1016/j.tcs.2017.05.039

    Article  MathSciNet  Google Scholar 

  9. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms for book embedding problems. J. Graph Algorithms Appl. 24(4), 603–620 (2020). https://doi.org/10.7155/jgaa.00526

    Article  MathSciNet  Google Scholar 

  10. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms for queue layouts. J. Graph Algorithms Appl. 26(3), 335–352 (2022). https://doi.org/10.7155/jgaa.00597

    Article  MathSciNet  Google Scholar 

  11. Bieker, N.: Complexity of graph drawing problems in relation to the existential theory of the reals. Ph.D. thesis, Bachelor’s thesis, Karlsruhe Institute of Technology (August 2020) (2020)

    Google Scholar 

  12. Brand, C., Ceylan, E., Ganian, R., Hatschka, C., Korchemna, V.: Edge-cut width: An algorithmically driven analogue of treewidth based on edge cuts. In: Bekos, M.A., Kaufmann, M. (eds.) Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22–24, 2022, Revised Selected Papers. LNCS, vol. 13453, pp. 98–113. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15914-5_8

  13. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.06.026

    Article  MathSciNet  Google Scholar 

  14. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  Google Scholar 

  15. Cygan, M., et al.: Parameterized Algorithms. 1st edn. Springer Publishing Company, Inc., Berlin (2015). https://doi.org/10.1007/978-3-319-21275-3

  16. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014). https://doi.org/10.1007/s00453-012-9706-7

    Article  MathSciNet  Google Scholar 

  17. Di Giacomo, E., Didimo, W., Grilli, L., Liotta, G., Romeo, S.A.: Heuristics for the maximum 2-layer RAC subgraph problem. Comput. J. 58(5), 1085–1098 (2015). https://doi.org/10.1093/comjnl/bxu017

    Article  Google Scholar 

  18. Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_9

    Chapter  Google Scholar 

  19. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite RAC graphs. Inf. Process. Lett. 110(16), 687–691 (2010). https://doi.org/10.1016/j.ipl.2010.05.023

    Article  MathSciNet  Google Scholar 

  20. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoret. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025

    Article  MathSciNet  Google Scholar 

  21. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1-4:37 (2019). https://doi.org/10.1145/3301281

    Article  Google Scholar 

  22. Diestel, R.: Graph Theory. 5th Edn., Graduate Texts in Mathematics, vol. 173. Springer, Cham (2017). https://doi.org/10.1007/978-3-662-53622-3

  23. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

  24. Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending nearly complete 1-planar drawings in polynomial time. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24–28, 2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.31

  25. Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol. 168, pp. 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.43

  26. Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths based on tree-likeness. Math. Program. 171(1–2), 433–461 (2018). https://doi.org/10.1007/s10107-017-1199-3

    Article  MathSciNet  Google Scholar 

  27. Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.53

  28. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of planar graphs. In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp. 426–433. ACM (1988). https://doi.org/10.1145/62212.62254

  29. Fáry, I.: On straight lines representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)

    MathSciNet  Google Scholar 

  30. Ganian, R.: Using neighborhood diversity to solve hard problems. CoRR abs/1201.3091 (2012). https://doi.org/10.48550/arXiv.1201.3091

  31. Ganian, R., Korchemna, V.: Slim tree-cut width. In: Dell, H., Nederlof, J. (eds.) 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7–9, 2022, Potsdam, Germany. LIPIcs, vol. 249, pp. 15:1–15:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.15

  32. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge-disjoint paths. Algorithmica 83(2), 726–752 (2021). https://doi.org/10.1007/s00453-020-00772-w

    Article  MathSciNet  Google Scholar 

  33. Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM J. Algebraic Discret. Methods 4(3), 312–316 (1983). https://doi.org/10.1137/0604033

    Article  MathSciNet  Google Scholar 

  34. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004). https://doi.org/10.1016/j.jcss.2003.07.008

    Article  MathSciNet  Google Scholar 

  35. Hlinený, P., Sankaran, A.: Exact crossing number parameterized by vertex cover. In: Archambault, D., Tóth, C.D. (eds.) Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17–20, 2019, Proceedings. LNCS, vol. 11904, pp. 307–319. Springer (2019). https://doi.org/10.1007/978-3-030-35802-0_24

  36. Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma, K. (eds.) APVIS 2007, 6th International Asia-Pacific Symposium on Visualization 2007, Sydney, Australia, 5–7 February 2007, pp. 97–100. IEEE Computer Society (2007). https://doi.org/10.1109/APVIS.2007.329282

  37. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.03.001

  38. Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, March 5–7, 2008, pp. 41–46. IEEE Computer Society (2008). https://doi.org/10.1109/PACIFICVIS.2008.4475457

  39. Knop, D., Koutecký, M., Masarík, T., Toufar, T.: Simplified algorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. Log. Methods Comput. Sci. 15(4), 1–32 (2019). https://doi.org/10.23638/LMCS-15(4:12)2019

    Article  MathSciNet  Google Scholar 

  40. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. In: de Berg, M., Meyer, U. (eds.) Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6–8, 2010. Proceedings, Part I. LNCS, vol. 6346, pp. 549–560. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-15775-2_47

  41. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM J. Optim. 11(4), 1065–1080 (2001). https://doi.org/10.1137/S1052623498334013

    Article  MathSciNet  Google Scholar 

  42. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-27875-4

  43. Robertson, N., Seymour, P.D.: Graph minors. III. Planar Tree-width. J. Comb. Theory, Ser. B. 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-3

  44. Schaefer, M.: RAC-drawability is \(\exists \mathbb{R} \)-complete. In: Graph Drawing and Network Visualization: 29th International Symposium, GD 2021, Tübingen, Germany, September 14–17, 2021, Revised Selected Papers, pp. 72–86. Springer-Verlag, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92931-2_5

Download references

Acknowledgments

The authors graciously accept support from the WWTF (Project ICT22-029) and the FWF (Project Y1329) science funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ganian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brand, C., Ganian, R., Röder, S., Schager, F. (2023). Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14466. Springer, Cham. https://doi.org/10.1007/978-3-031-49275-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49275-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49274-7

  • Online ISBN: 978-3-031-49275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics