Skip to main content

Analysis of the Heating Behavior and the Strength of Hot Gas Welded Polyamides with 3D Contours Using an Immersing Nozzle System

  • Chapter
  • First Online:
Lectures Notes on Advanced Structured Materials 2

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 203))

  • 118 Accesses

Abstract

With the help of computational fluid dynamics (CFD) simulations a nozzle system (top nozzle system) for hot gas welding, which encloses the weld seam during heating, was developed. The significantly more controlled flow behavior of the hot gas improves the processing window, increases the reproducibility and achieves a more efficient heating of the polymer weld seam with inclination angles up to 60°. The heating behavior and weld strength are investigated on three types of plate specimens with varying inclination angles. The investigations are carried out on a series-production hot gas welding system with PA6-GF30 and a PA66-GF35. Stainless steel additive manufactured top nozzle systems for 0°, 15°, 30°, 45° and 60° inclination angles are tested. With the optimized top nozzle system, weld seams with inclination angles of up to 60° can be reproducibly joined thanks to the wide processing window without a significant reduction of the component strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattke, M., Natrop, J.: Infrared heating in plastics welding technology. Join. Plast. 1, 58–63 (2007)

    Google Scholar 

  2. Gehde, M., Friedrich, S., Motshev, S.: Radiant heating during plastics welding with infrared radiation. Join. Plast. 2, 58–63 (2008)

    Google Scholar 

  3. Fuhrich, R., Gehde, M., Friedrich, S.: Process temperature measurement in infrared welding. Join. Plast. 5, 34–39 (2011)

    Google Scholar 

  4. Fuhrich, R., Gehde, M., Friedrich, S.: Mechanical properties of infrared-welded joints. Join. Plast. 5, 216–221 (2011)

    Google Scholar 

  5. Fuhrich, R., Gehde, M.: Contour-following infrared radiator for the welding of plastics with high time and energy efficiencies. Join. Plast. 8, 204–211 (2014)

    Google Scholar 

  6. Klein, H.M.: Laserschweißen von Kunststoffen in der Mikrotechnik. Dissertation, RWTH Aachen (2001)

    Google Scholar 

  7. Schulz, J.E.: Werkstoff-, Prozess- und Bauteiluntersuchungen zum Laserdurchstrahlschweißen von Kunststoffen, Dissertation, RWTH Aachen (2002)

    Google Scholar 

  8. Mochev, S., Endemann, U.M.: Mehr als nur heiße Luft. Systematische Prozesoptimierung für das Heißgasschweißen. Kunststoffe 10, 76–79 (2016)

    Google Scholar 

  9. Tschech, T.: Heißgasschweißen in der Serienfertigung. Presentation 2017

    Google Scholar 

  10. Mochev, S., Endemann, U.M.: Faster and better welding: tools adaption reduces process times and improves weld quality. Kunststoffe Int. 9, 57–59 (2018)

    Google Scholar 

  11. Albrecht, M., Bialaschik, M.O., Gehde, M. et al.: Hot gas welding—influences of the tool design. In: AIP Conference Proceedings 2289, 020006 (2020). https://doi.org/10.1063/5.0029478

  12. Albrecht, M., Bialaschik, M., Gehde, M., et al.: Hot gas butt welding of plastic. Join. Plast. 15, 162–169 (2021)

    Google Scholar 

  13. Schmid, J., Weißer, D.F., Mayer, D., et al.: Reduction of the heating time for hot gas welding. Reduktion der Erwärmungszeit beim Heißgasschweißen. Kunststofftechnik 17, 112–128 (2021)

    Article  Google Scholar 

  14. Schmid, J., Weißer, D.F., Maye, D., et al.: Heißgasschweißen in der Komfortzone. Neuartige Düsengeneration eröffnet vielfältige Möglichkeiten. Kunststoffe 50, 80–82 (2021)

    Google Scholar 

  15. Schmid, J., Weißer, D.F., Mayer, D., et al.: Reduktion der Erwärmungszeit beim Heißgasschweißen. Technomer 2021–27. Fachtagung über Verarbeitung und Anwendung von Polymeren, Chemnitz (2021)

    Google Scholar 

  16. Schmid, J., Weißer, D.F., Mayer, D., et al.: Increase of the efficiency in hot gas welding by optimization of the gas flow. Technol. Lightweight Struct. 5, 32–40 (2022)

    Article  Google Scholar 

  17. Schmid, J., Weißer, D.F., Mayer, D., et al.: Analysis of two different nozzle systems for hot gas welding using CFD simulations and measurement results. Kunststofftechnik 18, 117–145 (2022)

    Article  Google Scholar 

  18. Schmid, J., Weißer, D.F., Mayer, D., et al.: CFD analysis of hot gas welding of 3D weld contours using two different nozzle systems. Adv. Struct. Mater. 153. Springer Nature Switzerland AG (2022)

    Google Scholar 

  19. Schlarb, A.K.H.: Zum Vibrationsschweissen von Polymerwerkstoffen. Prozess - Struktur - Eigenschaften. Dissertation, Universität Kassel (1989)

    Google Scholar 

  20. Friedrich, S.: Lineares Vibrationsschweißen von Kunststoffen im industriellen Umfeld. Einflüsse und Restriktionen. Dissertation, Technische Universität Chemnitz (2014)

    Google Scholar 

  21. Rattke, M., Natrop, J.: Newly developed convection welding process on a natural gas basis. Join. Plast. 2, 129–133 (2008)

    Google Scholar 

  22. Barkhoff, R., Happel, J.: Quadralux: Hybrid heating procedure for the welding of plastics. Join. Plast. 13, 161 (2019)

    Google Scholar 

  23. Potente, H., Schöppner, V., Hoffschlag, R.: Investigations into the melt adhesion during heated tool welding. Join. Plast. 4, 102–107 (2010)

    Google Scholar 

  24. Belmann, A.: Reducing contaminations during the joining of plastics. Join. Plast. 11, 34–41 (2017)

    Google Scholar 

  25. Egen, U.: Gefügestruktur in Heizelementschweißnähten an Polypropylen-Rohren. Dissertation, Universität Kassel (1985)

    Google Scholar 

  26. Kreiter, J.: Optimierung der Schweißnahtfestigkeit von Heizelementstumpfschweißungen von Formteilen durch verbesserte Prozessführung und Selbsteinstellung. Dissertation, Universität Paderborn (1987)

    Google Scholar 

  27. Bonten, C.: Beitrag zur Erklärung des Wirkmechanismus in Schweissverbindungen aus teilkristallinen Thermoplasten. Dissertation, Universität Gesamthochschule Essen (1998)

    Google Scholar 

  28. Tüchert, C.: Einfluss der inneren Eigenschaften von Schweißverbindungen auf die langzeitige Schweißnahtgüte. Dissertation, RWTH Aachen (2005)

    Google Scholar 

  29. Potente, H., Schöppner, V., Hoffschlag, R., et al.: Saving cycle time by means of intensive cooling during heated tool welding. Join. Plast. 2, 50–56 (2008)

    Google Scholar 

  30. Friedrich, N., Schöppner, V.: Reducing the cycle time in heated tool welding without any loss in quality as a result of forced cooling using compressed air. Join. Plast. 6, 134–141 (2012)

    Google Scholar 

  31. Baudrit, B., Schmitt, M., Kressirer, S., et al.: Energy efficiency during heated tool welding. Join. Plast. 8, 197–203 (2014)

    Google Scholar 

  32. Mochev, S.: Heißgasschweißen - Aktuelle Entwicklungen und Möglichkeiten. Tagungsbeitrag - Fügen von Kunststoffen im Automobilbau. Carl Hanser Verlag, Landshut (2018)

    Google Scholar 

  33. Deckert, M.H., Schmid, J., Weißer, D.F.: Neuartiges Heißgasschweißen von Kunststoffbauteilen. Hochschule Esslingen - Spektrum 48, 21–23 (2019)

    Google Scholar 

  34. Rzepka, G.: Solid connection under a special atmosphere. How low-particle, non-contact welding of technical to high-performance plastics works. K-PROFI Int. 2, 30–35 (2021)

    Google Scholar 

  35. GMB Kunststoffteile GmbH: DE 20 2021 101 884 U1 – Gebrauchsmusterschrift: Vorrichtung zum Schweißen von Kunststoffteilen, Pleidelsheim (2020)

    Google Scholar 

  36. DuPont De Nemours, Inc.: Data sheet Zytel® 70G35HSLR BK416LM (PA6-GF30) Technical information—DuPont De Nemours, Inc. (2019)

    Google Scholar 

  37. DuPont De Nemours, Inc.: Data sheet Zytel® 73G30HSL BK416 (PA6-GF30) Technical information—DuPont De Nemours, Inc. (2021)

    Google Scholar 

Download references

Acknowledgements

In a joint research project from 2019 to 2021 between GMB Kunststoffteile GmbH and Esslingen University of Applied Sciences (Polymer Technologies Department) on hot gas welding (funded by the “Zentrale Innovationsprogramm Mittelstand (ZIM)” from the Federal Ministry for Economic Affairs and Energy—funding code: ZF4166303FH8), the investigated nozzle system—the top nozzle—has been invented and protected [37]. In a further joint research project between GMB Kunststoffteile GmbH, robomotion GmbH, Chemnitz University of Technology (Department of Lightweight Structures and Polymer Technology) and Esslingen University of Applied Sciences (Polymer Technologies Department) on hot gas welding (funded by the “Zentrale Innovationsprogramm Mittelstand (ZIM)” from the Federal Ministry for Economic Affairs and Energy—funding code: KK5052604WO0), the top nozzle system was further developed with the help of CFD simulations for 3D weld contours. The top nozzles for welding geometries with inclination angles of up to 60° were additively manufactured by the Department of Lightweight Structures and Polymer Technology from Chemnitz University of Technology. We also would like to thank Dr.-Ing. Andreas Müller of Celanese for his support in the selection of suitable materials and for making the materials available to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmid, J., Heienbrock, S.J., Mayer, D., Weißer, D.F., Deckert, M.H. (2024). Analysis of the Heating Behavior and the Strength of Hot Gas Welded Polyamides with 3D Contours Using an Immersing Nozzle System. In: Altenbach, H., Hitzler, L., Johlitz, M., Merkel, M., Öchsner, A. (eds) Lectures Notes on Advanced Structured Materials 2. Advanced Structured Materials, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-031-49043-9_14

Download citation

Publish with us

Policies and ethics