Skip to main content

Graph-Based Feature Learning from Image Markers

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2023)

Abstract

Deep learning methods have achieved impressive results for object detection, but they usually require powerful GPUs and large annotated datasets. In contrast, there is a lack of explainable networks in the literature. For instance, Feature Learning from Image Markers (FLIM) is a feature extraction strategy for lightweight CNNs without backpropagation that requires only a few training images. In this work, we extend FLIM for general image graph modeling, allowing it for a non-strict kernel shape and taking advantage of the adjacency relation between nodes to extract feature vectors based on neighbors’ features. To produce saliency maps by combining learned features, we proposed a User-Guided Decoder (UGD) that does not require training and is suitable for any FLIM-based strategy. Our results indicate that the proposed Graph-based FLIM, named GFLIM, not only outperforms FLIM but also produces competitive detections with deep models, even having an architecture thousands of times smaller in the number of parameters. Our code is publicly available at https://github.com/IMScience-PPGINF-PucMinas/GFLIM.

The authors thank the Pontifícia Universidade Católica de Minas Gerais – PUC-Minas, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES – (Grant COFECUB 88887.191730/2018-00, Grant PROAP 88887.842889/2023-00 – PUC/MG and Finance Code 001), the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grants 303808/2018-7, 407242/2021-0, 306573/2022-9) and Fundação de Apoio à Pesquisa do Estado de Minas Gerais – FAPEMIG (Grant APQ-01079-23), PUC Minas and INRIA under the project Learning on graph-based hierarchical methods for image and multimedia data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considering the evaluated GFLIM architectures and a CPU Intel Core\(^{\text {TM}}\) i5-7200U @ 2.5 GHz x 4, 64bit with 24GB RAM.

References

  1. Bar, A., et al.: Detreg: unsupervised pretraining with region priors for object detection. arXiv preprint arXiv:2106.04550 (2021)

  2. Belém, F.C., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation using dynamic and iterative spanning forest. IEEE Signal Process. Lett. 27, 1440–1444 (2020). https://doi.org/10.1109/LSP.2020.3015433

    Article  Google Scholar 

  3. Cerqueira, M.A., Sprenger, F., Teixeira, B.C., Falcão, A.X.: Building brain tumor segmentation networks with user-assisted filter estimation and selection. In: 18th International Symposium on Medical Information Processing and Analysis, vol. 12567, pp. 202–211. SPIE (2023)

    Google Scholar 

  4. De Souza, I.E., Falcão, A.X.: Learning cnn filters from user-drawn image markers for coconut-tree image classification. IEEE Geoscience and Remote Sensing Letters (2020)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  7. O Pinheiro, P.O., Almahairi, A., Benmalek, R., Golemo, F., Courville, A.C.: Unsupervised learning of dense visual representations. Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  8. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recognition (2020)

    Google Scholar 

  9. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  10. Sousa, A.M., Reis, F., Zerbini, R., Comba, J.L., Falcão, A.X.: Cnn filter learning from drawn markers for the detection of suggestive signs of covid-19 in ct images. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3169–3172. IEEE (2021)

    Google Scholar 

  11. de Souza, I.E., Benato, B.C., Falcão, A.X.: Feature learning from image markers for object delineation. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 116–123. IEEE (2020)

    Google Scholar 

  12. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. (2013)

    Google Scholar 

  13. Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)

    Google Scholar 

  14. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R.: Salient object detection in the deep learning era: an in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  15. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  16. Wei, F., Gao, Y., Wu, Z., Hu, H., Lin, S.: Aligning pretraining for detection via object-level contrastive learning. Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  17. Yang, C., Wu, Z., Zhou, B., Lin, S.: Instance localization for self-supervised detection pretraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3987–3996 (2021)

    Google Scholar 

  18. Yun, Y.K., Lin, W.: Selfreformer: Self-refined network with transformer for salient object detection. arXiv preprint arXiv:2205.11283 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio J. F. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barcelos, I.B., de Melo João, L., Patrocínio, Z.K.G., Kijak, E., Falcão, A.X., Guimarães, S.J.F. (2024). Graph-Based Feature Learning from Image Markers. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics