Skip to main content

Source and Distribution of Mercury in Environment—A Review

  • Chapter
  • First Online:
Mercury Toxicity Mitigation: Sustainable Nexus Approach

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 139 Accesses

Abstract

Mercury (Hg) is an unescapable pollutant across the globe due to its unique cycling process. Understanding the causes and distribution of Hg pollution in the environment is essential for managing it efficiently and reducing its adverse consequences. Although Hg naturally occurs in the crust of the Earth, human activity has greatly increased the amount of Hg released into the environment. While some Hg is naturally released into the atmosphere as a result of volcanic activity and other geological processes, human activities such as industrial processes, small-scale gold mining, the production of cement and non-ferrous metals, and coal combustion have significantly increased the amount of Hg in the atmosphere globally. Mercury contamination is a genuine worldwide environmental hazard since it may travel great distances and eventually deposit in water, soil, and biota. This chapter provides a thorough review of the sources and distribution of Hg in the environment. It looks at how much anthropogenic and natural sources of Hg contribute to the overall environmental burden. Additionally, this chapter looks at the variables that affect how Hg is transported and changed in various environmental compartments. Regular monitoring of its concentrations is necessary to pinpoint highly contaminated locations and comprehend how Hg spreads throughout the environment. The development of monitoring techniques and modeling strategies used to forecast Hg transport within the environment will also be covered in this chapter. Overall, the goal of this chapter is to better understand the origins, modes of transportation, and distribution of Hg in the environment. It seeks to establish a basis for policymakers, researchers, and environmental practitioners to build informed solutions to address this enduring environmental issue and defend ecosystems and human health for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Saleh I, Nester M, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T, Elkhatib R (2016) Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant’s neurodevelopment. Int J Hyg Environ Health 219:898–914

    Article  CAS  Google Scholar 

  2. AMAP (2021) AMAP Assessment 2021: mercury in the arctic. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway

    Google Scholar 

  3. Amos HM, Jacob DJ, Streets DG, Sunderland EM (2013) Legacy impacts of all-time anthropogenic emissions on the global mercury scale. Glob Biogeochem Cycl 27:1–12

    Article  Google Scholar 

  4. Artaxo P, de Campos RC, Fernandes ET, Martins JV, Xiao Z, Lindqvist O, Fernández-Jiménez MT, Maenhaut W (2000) Large scale mercury and trace element measurements in the Amazon basin. At Environ 34(24):4085–4096

    Article  CAS  Google Scholar 

  5. Bailey EA, Gray JE, Theodorakos PM (2002) Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska. USA Geochem Explor Environ Anal 2:275–285

    Article  CAS  Google Scholar 

  6. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  Google Scholar 

  7. Ballabio C, Jiskra M, Osterwalder S, Borrelli P, Montanarella L, Panagos P (2021) A spatial assessment of mercury content in the European Union topsoil. Sci Total Environ 769:144755. https://www.sciencedirect.com/science/article/pii/S0048969720382887

  8. Banásová V (1999) Vegetation on contaminated sites near an Hg mine and smelter. In: Ebinghaus RR, Turner RR, de Lacedra LD, Vasiljev O, Salomons W (eds) Mercury contaminated sites. Springer, Berlin, pp 321–335

    Chapter  Google Scholar 

  9. Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DC et al (2019) Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environ Inter 127:276–290

    Article  CAS  Google Scholar 

  10. Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications—a review. Crit Rev Environ Sci Technol 47(9):693–794

    Article  CAS  Google Scholar 

  11. Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565:73–80

    Article  CAS  Google Scholar 

  12. Biester H, Müller G, Schöler HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203

    Article  CAS  Google Scholar 

  13. Bloom NS (2000) Analysis and stability of mercury speciation in petroleum hydrocarbons. Fres J Anal Chem 366(5):438–443

    Article  CAS  Google Scholar 

  14. Boente C, Albuquerque MTD, Gerassis S, Rodríguez-Valdés E, Gallego JR (2019) A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. Chemosphere 218:767–777

    Article  CAS  Google Scholar 

  15. Bojakowska I, Sokołowska G (2001) Rtęć w kopalinach wydobywanych w Polsce jako potencjalne źródło zanieczyszczenia środowiska (Mercury in the extracted substances extracted in Poland as a potential source of environmental pollution—in Polish). Biul Panstw Inst Geol 394:5–53

    Google Scholar 

  16. Bonanno G, Giudice RL, Pavone P (2012) Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle. Italy Monit Assess 184:5181–5188

    Article  CAS  Google Scholar 

  17. Boszke L, Kowalski A, Siepak J (2004) Grain size partitioning of mercury in sediments of the middle Odra River (Germany/Poland). Water Air Soil Poll 159:125–138

    Article  CAS  Google Scholar 

  18. Bowman KL, Collins RE, Agather AM, Lamborg CH, Hammerschmidt CR, Kaul D, Dupont CL, Christensen GA, Elias DA (2020) Distribution of mercury-cycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnol Oceanogr 65(S1):S310–S320

    Article  CAS  Google Scholar 

  19. Carocci A, Catalano A, Lauria G, Sinicropi MS, Genchi G (2016) A review on mercury toxicity in food. Food Toxicol 315

    Google Scholar 

  20. Carpi A, Fostier AH, Orta OR, dos Santos JC, Gittings M (2014) Gaseous mercury emissions from soil following forest loss and land use changes: Field experiments in the United States and Brazil. Atm Environ 96:423–429

    Article  CAS  Google Scholar 

  21. Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C et al (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ 569:105–113

    Article  Google Scholar 

  22. Cossa D, Martin JM, Takayanagi K, Sanjuan J (1997) The distribution and cycling of mercury species in the western mediterranean. deep-sea research Part II: Top. Stud Oceanogr 44:721–740

    CAS  Google Scholar 

  23. Dastoor A, Wilson SJ, Travnikov O, Ryjkov A, Angot H, Christensen JH, Steenhuisen F, Muntean M (2022) Arctic atmospheric mercury: sources and changes. Sci Total Environ 839:156213. https://doi.org/10.1016/j.scitotenv.2022.156213

    Article  CAS  Google Scholar 

  24. de Souza JG, Robinson M, Maezumi SY, Capriles J, Hoggarth JA, Lombardo U, Novello VF, Apaéstegui J, Whitney B, Urrego D, Alves DT (2019) Climate change and cultural resilience in late pre-Columbian Amazonia. Nat Ecol Evol 3:1007–1017

    Article  Google Scholar 

  25. Dommergue A, Sprovieri F, Pirrone N, Ebinghaus R, Brooks S, Courteaud J, Ferrari CP (2010) Overview of mercury measurements in the Antarctic troposphere. Atmos Chem Phys 10:3309–3319

    Article  CAS  Google Scholar 

  26. Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, Obrist D, Fleck JA, Aiken GR, Lepak JM, Jackson AK (2016) Mercury in western North America: a synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Sci Total Environ 568:1213–1226

    Article  CAS  Google Scholar 

  27. Eisler R (2006) Mercury hazards to living organisms. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2015) Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environ Sci Pollut Res 22:4842–4850

    Article  Google Scholar 

  29. Eto K (2000) Minamata disease. Neuropathol 20:S14–S19

    Google Scholar 

  30. Eto K, Takeuchi T (1978) A pathological study of prolonged cases of Minamata disease. With particular reference to 83 autopsy cases. Acta Pathol Jpn 28:565–584

    CAS  Google Scholar 

  31. Evers DC, DiGangi J, Petrlík J, Buck DG, Šamánek J, Beeler B, Turnquist MA, Hatch SK, Regan K (2014) Global mercury hotspots: New evidence reveals mercury contamination regularly exceeds health advisory levels in humans and fish worldwide. Biodiversity Research Institute. Portland, Maine. IPEN. Göteborg, Sweden. BRI-IPEN Sci Commun (34):1–20

    Google Scholar 

  32. FDA (2000) Action levels for poisonous or deleterious substances in human food and animal feed. Accessible at: http://www.cfsan.fda.gov/~lrd/fdaact.html#merc.

  33. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  34. Frimmel HE, Gartz VH (1997) Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Miner Dep 32(6):523–530

    Article  CAS  Google Scholar 

  35. Furimsky E (2000) Characterization of trace element emissions from coal combustion by equilibrium calculations. Fuel Process Technol 63:29–44

    Article  CAS  Google Scholar 

  36. Gaffney JS, Marley NA (2014) In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Energy Emiss Control Technol 2:1–21

    Google Scholar 

  37. Gemici Ü, Tarcan G, Somay AM, Akar T (2009) Factors controlling the element distribution in farming soils and water around the abandoned Halıköy mercury mine (Beydağ, Turkey). Appl Geochem 24:1908–1917

    Article  CAS  Google Scholar 

  38. Gerson JR, Szponar N, Zambrano AA, Bergquist B, Broadbent E, Driscoll CT, Erkenswick G, Evers DC, Fernandez LE, Hsu-Kim H, Inga G (2022) Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat Commun 13(1):559. https://www.nature.com/articles/s41467-022-27997-3

  39. Gerson JR, Topp SN, Vega CM, Gardner JR, Yang X, Fernandez LE, Bernhardt ES, Pavelsky TM (2020) Artificial lake expansion amplifies mercury pollution from gold mining. Sci Adv 6(48):eabd4953

    Google Scholar 

  40. Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183

    Article  CAS  Google Scholar 

  41. Grassia S, Nettib R (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (southern Tuscany, Italy). J Hydrol 237:198–211

    Article  Google Scholar 

  42. Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region. Texas Environ Geochem Hlth 37:35–48

    Article  CAS  Google Scholar 

  43. Gustin MS, Lindberg SE, Weisberg PJ (2008) An update on the natural sources and sinks of atmospheric mercury. Appl Geochem 23:482–493

    Article  CAS  Google Scholar 

  44. Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J (2017) Air contamination by mercury, emissions and transformations—a review. Water Air Soil Pollut 228:1–31

    Article  CAS  Google Scholar 

  45. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  Google Scholar 

  46. He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res Int 22:8124–8147

    Article  CAS  Google Scholar 

  47. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district. Spain J Geochem Explor 80(1):95–104

    Article  CAS  Google Scholar 

  48. Hissler C, Probst JL (2006) Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Sci Total Environ 361:163–178

    Article  CAS  Google Scholar 

  49. Hsu-Kim H, Eckley CS, Acha´ D, Feng X, Gilmour CC, Jonsson S, Mitchell CPJ (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141–169

    Google Scholar 

  50. JECFA (2003) Joint FAO/WHO Committee on Food Additives: Sixty-first meeting, Rome. Summary and conclusions. Accessible at: www.who.int/entity/ipcs/food/jecfa/summaries/en/summary_61.pdf.

  51. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  52. Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. Taylor & Francis, pp 468

    Google Scholar 

  53. Khan MN, Wasim AA, Sarwar A, Rasheed MF (2011) Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway. Pakistan Environ Monit Assess 182:587–595

    Article  CAS  Google Scholar 

  54. Kumar A, Wu S, Huang Y, Liao H, Kaplan JO (2018) Mercury from wildfires: global emission inventories and sensitivity to 2000–2050 global change. Atmos Environ 173:6–15

    Article  CAS  Google Scholar 

  55. Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 97(3–4):209–221

    Article  CAS  Google Scholar 

  56. Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Glob Biogeochem Cycl 16:1104–1114

    Article  Google Scholar 

  57. Landis MS, Keeler GJ (2002) Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environ Sci Technol 36(21):4518–4524

    Article  CAS  Google Scholar 

  58. Li Q, Tang L, Qiu G, Liu C (2020) Total mercury and methylmercury in the soil and vegetation of a riparian zone along a mercury-impacted reservoir. Sci Total Environ 738:139794. https://doi.org/10.1016/j.scitotenv.2020.139794

    Article  CAS  Google Scholar 

  59. Li R, Li R, Wu H, Ding J, Fu W, Gan L, Li Y (2017) Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci Rep 7(1):46545. https://doi.org/10.1038/srep46545

    Article  CAS  Google Scholar 

  60. Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X et al (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan. China Environ Pollut 225:681–690

    Article  CAS  Google Scholar 

  61. Lin Y, Vogt R, Larssen T (2012) Environmental mercury in China: a review. Environ Toxicol Chem 31:2431–2444

    Article  CAS  Google Scholar 

  62. Lina CJ, Pongprueksaa P, Lindberg SE, Pehkoned SO, Byune D, Jang C (2006) Scientific uncertainties in atmospheric mercury models I: model science evaluation. Atm Environ 40:2911–2928

    Article  Google Scholar 

  63. Martínez-Trinidad S, Hernández Silva G, Ramírez Islas ME, Martínez Reyes J, Solorio Munguía G, Solís Valdez S, García Martínez R (2013) Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro. Mexico Geofísica Int 52(1):43–58

    Article  Google Scholar 

  64. Mason R, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycl 16:1–14

    Article  Google Scholar 

  65. Mason RP, Lawson NM, Sullivan KA (1997) The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atm Environ 31(21):3541–3550

    Article  CAS  Google Scholar 

  66. Mason RP, Pirrone N, Hedgecock I, Suzuki N, Levin L (2010) Conceptual overview. In: Pirrone N, Keating T (eds) Hemispheric transport of air pollution—part B. United Nations Publication, New York, pp 1–19

    Google Scholar 

  67. Mason RP, Rolfhus K, Fitzgerald WF (1998) Mercury in the North Atlantic. Mar Chem 61:37–53

    Article  CAS  Google Scholar 

  68. Mayer W, Sass-Gustkiewicz M (1998) Geochemical characterization of sulphide minerals from the Olkusz lead-zinc ore cluster, Upper Silesia (Poland), based on laser ablation data. Miner Polon 29:87–105

    Google Scholar 

  69. Meija J, Yang L, Sturgeon RE, Mester Z (2010) Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight. J Anal Atom Spectrom 25:384–389

    Article  CAS  Google Scholar 

  70. Meng W, Wang Z, Hu B, Wang Z, Li H, Goodman RC (2016) Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: a case study assessment. Agric Water Manag 171:153–161

    Article  Google Scholar 

  71. Navrátil T, Burns DA, Nováková T, Kaňa J, Rohovec J, Roll M et al (2018) Stability of mercury concentration measurements in archived soil and peat samples. Chemosphere 208:707–711

    Article  Google Scholar 

  72. Nriagu JO (1993) Legacy of mercury pollution. Nature 363:589. https://www.nature.com/articles/363589a0

  73. Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140

    Article  Google Scholar 

  74. Obrist D, Pearson C, Webster J, Kane T, Lin CJ, Aiken GR et al (2016) A synthesis of terrestrial mercury in the western United States: spatial distribution defined by land cover and plant productivity. Sci Total Environ 568:522–535

    Article  CAS  Google Scholar 

  75. Oliveira LC, Dietz JM (2011) Predation risk and the interspecific association of two Brazilian Atlantic forest primates in Cabruca agroforest. Am J Primatol 73(9):852–860

    Article  Google Scholar 

  76. Osterwalder S, Huang JH, Shetaya WH, Agnan Y, Frossard A, Frey B et al (2019) Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environ Pollut 250:944–952

    Article  CAS  Google Scholar 

  77. Pacyna EG, Pacyna JM (2002) Global emission of mercury from anthropogenic sources in 1995. Water Air Soil Pollut 137:149–165

    Article  CAS  Google Scholar 

  78. Pacyna EG, Pacyna JM, Steenhuisene F, Wilsond S (2006) Global anthropogenic mercury emission inventory for 2000. Atm Environ 40(22):4048–4063

    Article  CAS  Google Scholar 

  79. Pacyna EG, Pacyna JM, Sundsetha K, Munthec J, Kindbomc K, Wilsond S et al (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atm Environ 44(20):2487–2499

    Article  CAS  Google Scholar 

  80. Pacyna JM, Munthe J, Wilson S (2008) Global emission of mercury to the atmosphere. In: AMAP/UNEP, technical background report to the global atmospheric mercury assessment, arctic monitoring and assessment programme. UNEP Chemical Branch, pp 64–72

    Google Scholar 

  81. Pasieczna A, Bojakowska I, Paolo A (2007) Arsenic and mercury in brown and hard coals from deposits of Poland. Goldschmidt conference abstracts. Geochimica et Cosmochimica Acta 71(159):A762

    Google Scholar 

  82. Petrova MV, Krisch S, Lodeiro P, Valk O, Dufour A, Rijkenberg MJA, Achterberg EP, Rabe B, Rutgers van der Loeff M, Hamelin B, Sonke JE, Garnier C, Heimbürger-Boavida LE (2020) Mercury species export from the arctic to the atlantic ocean. Mar Chem 225:103855. https://doi.org/10.1016/j.marchem.2020.103855n

    Article  CAS  Google Scholar 

  83. Pinto LDC, Dórea JG, Bernardi JVE, Gomes LF (2019) Mapping the evolution of mercury (Hg) research in the Amazon (1991–2017): a scientometric analysis. Int J Environ Res Pub Health 16(7):1111. https://pubmed.ncbi.nlm.nih.gov/30925692

  84. Pirrone N, Cinnirella S, Feng X et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  85. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atm Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  86. Pirrone N, Hedgecock IM, Sprovieri F (2008) New Directions: Atmospheric mercury, easy to spot and hard to pin down: Impasse? Atmos Environ 42:8549–8551

    Article  CAS  Google Scholar 

  87. Qiu G, Feng X, Wang S, Shang L (2006) Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou. China Environ Pollut 142:549–558

    Article  CAS  Google Scholar 

  88. Raj D, Maiti SK (2019) Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess 191:566. https://doi.org/10.1007/s10661-019-7743-2

    Article  CAS  Google Scholar 

  89. Rayaboshapko AG, Korolev VA (1997) Mercury in the atmosphere: estimation of model parameters. Meteorological Synthesizing Centre—East, EMEP/MSC-E, Report 7/97, Moscow

    Google Scholar 

  90. Reimann C, de Caritat P (2017) Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci Total Environ 578:633–648

    Article  CAS  Google Scholar 

  91. Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377

    Article  CAS  Google Scholar 

  92. Rezende PS, Silva NC, Moura WD, Windmöller CC (2018) Quantification and speciation of mercury in streams and rivers sediment samples from Paracatu, MG, Brazil, using a direct mercury analyzer®. Microchem J 140:199–206

    Article  CAS  Google Scholar 

  93. Roulet M, Lucotte M, Farella N, Serique G, Coelho H, Sousa Passos CJ et al (1999) Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut 112(3):297–313

    Article  CAS  Google Scholar 

  94. Sanga TR, Maseka KK, Ponraj M, Tungaraza C, Mwakalapa EB (2023) Accumulation and distribution of mercury in agricultural soils, food crops and associated health risks: a case study of Shenda gold mine-Geita Tanzania. Environ Challen 11:100697. https://doi.org/10.1016/j.envc.2023.100697

    Article  CAS  Google Scholar 

  95. Satoh H (2013) Mercury. In: Weiss B (ed) Aging and Vulnerability to environmental chemicals. Royal Society of Chemistry, Cambridge

    Google Scholar 

  96. Schartup AT, Qureshi A, Dassuncao C, Thackray CP, Harding G, Sunderland EM (2018) A model for methylmercury uptake and trophic transfer by marine plankton. Environ Sci Technol 52(2):654–662

    Article  CAS  Google Scholar 

  97. Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR et al (1998) Arctic springtime depletion of mercury. Nature 394:331–332

    Article  CAS  Google Scholar 

  98. Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman-Mercer N, Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T (2018) Permafrost stores a globally significant amount of mercury. Geophys Res Lett 45(3):1463–1471

    Article  CAS  Google Scholar 

  99. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Ann Rev Environ Resour 34:43–63

    Article  Google Scholar 

  100. Selin NE, Jacob DJ (2008) Seasonal and spatial patterns of mercury wet deposition in the United States: constraints on the contribution from North American anthropogenic sources. Atm Environ 42(21):5193–5204

    Article  CAS  Google Scholar 

  101. Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaeglé L et al (2007) Chemical cycling and deposition of atmospheric mercury: global constraints from observations. J Geophysic Res 112:1–14

    Article  Google Scholar 

  102. Song Z, Li P, Ding L, Li Z, Zhu W, He T, Feng X (2018) Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J Geochem Explor 194:81–87

    Article  CAS  Google Scholar 

  103. Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A (2010) A review of worldwide atmospheric mercury measurements. Atmos Chem Phys 10:8245–8265

    Article  CAS  Google Scholar 

  104. Stoffers P, Hannington M, Wright I, Herzig P, de Ronde C (1999) Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand. Geology 27:931–934

    Article  CAS  Google Scholar 

  105. Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ (2011) All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol 45(24):10485–10491

    Article  CAS  Google Scholar 

  106. Streets DG, Haob J, Wuc Y, Jiangb J, Chand M, Tianb H et al (2005) Anthropogenic mercury emissions in China. Atm. Environ. 39:7789–7806

    Article  CAS  Google Scholar 

  107. Streets DG, Horowitz HM, Jacob DJ, Lu Z, Levin L, Ter Schure AF, Sunderland EM (2017) Total mercury released to the environment by human activities. Environ Sci Technol 51(11):5969–5977

    Article  CAS  Google Scholar 

  108. Streets DG, Horowitz HM, Lu Z, Levin L, Thackray CP, Sunderland EM (2019) Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos Environ 201:417–427

    Article  CAS  Google Scholar 

  109. Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43(8):2983–2988

    Article  CAS  Google Scholar 

  110. Sunderland EM, Mason RP (2007) Human impacts on open ocean mercury concentrations. Glob Biogeochem Cycl 21(4):GB4022

    Google Scholar 

  111. Swain EB, Jakus PM, Rice G, Lupi F, Maxson PA, Pacyna JM et al (2007) Socioeconomic consequences of mercury use and pollution. Ambio 36:45–61

    Article  Google Scholar 

  112. Telmer KH, Veiga MM (2009) World emissions of mercury from small scale and artisanal gold mining. In: Pirrone N, Mason R (eds) Mercury fate and transport in the global atmosphere: emissions, measurements and models. Springer, New York, pp 131–172

    Chapter  Google Scholar 

  113. Teršič T, Gosar M, Šajn R (2009) Impact of mining activities on soils and sediments at the historical mining area in Podljubelj, NW Slovenia. J Geochem Explor 100:1–10

    Article  Google Scholar 

  114. Tesán Onrubia JA, Petrova MV, Puigcorbé V, Black EE, Valk O, Dufour A, Hamelin B, Buesseler KO, Masqué P, Le Moigne FAC, Sonke JE, Rutgers van der Loeff M, Heimbürger-Boavida LE (2020) Mercury export flux in the arctic ocean estimated from 234Th/238U Disequilibria. ACS Earth Space Chem. 4(5):795–801

    Google Scholar 

  115. Uddin S, Afroz H, Hossain M, Briffa J, Blundell R, Islam MR (2023) Heavy metals/metalloids in food crops and their ımplications for human health. In: Hossain MA, Hossain AKMZ, Bourgerie S, Fujita M, Dhankher OP, Haris P (eds) Heavy metal toxicity and tolerance in plants: a biological, omics, and genetic engineering approach, 1st edn. Wiley, UK, pp 59–86. https://doi.org/10.1002/9781119906506.ch3

  116. Ullrich SM, Ilyushchenko MA, Kamberov IM, Tanton TW (2007) Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh. Sci Total Environ 381:1–16

    Article  CAS  Google Scholar 

  117. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation (Review). Crit Rev Environ Sci Technol 31(3):241–293

    Article  CAS  Google Scholar 

  118. UNEP (2019) Global mercury assessment 2018. Geneva. www.unep.org

  119. UNEP/WHO (2008) Guidance for identifying populations at risk from mercury exposure. In: UNEP chemicals branch and WHO department of food safety, zoonoses and foodbourne diseases. Geneva, Switzerland, p 176

    Google Scholar 

  120. Varekamp JC, Buseck PR (1984) The speciation of mercury in hydrothermal systems, with applications to ore deposition. Geochim Cosmochim Acta 48:177–185

    Article  CAS  Google Scholar 

  121. Varekamp JC, Buseck PR (1986) Global mercury flux from volcanic and geothermal sources. Appl Geochem 1:65–73

    Article  CAS  Google Scholar 

  122. Vetriani C, Chew YS, Miller SM et al (2005) Mercury adaptation among bacteria from a deep sea hydrothermal vent. Appl Environ Microbiol 71:220–226

    Article  CAS  Google Scholar 

  123. Wahsha M, Maleci L, Bini C (2019) The impact of former mining activity on soils and plants in the vicinity of an old mercury mine (Vallalta, Belluno, NE Italy). Geochem-Explor Environ Anal 19:171–175

    Article  CAS  Google Scholar 

  124. Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209–214

    Article  CAS  Google Scholar 

  125. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  126. WHO (2017) Ten chemicals of major health concern. World Health Organization

    Google Scholar 

  127. Wilhelm SM (2001) Estimate of mercury emissions to the atmosphere from petroleum. Environ Sci Technol 35(24):4704–4710

    Article  CAS  Google Scholar 

  128. Wright LP, Zhang L, Marsik FJ (2016) Overview of mercury dry deposition, litterfall, and throughfall studies. Atm Chem Phys 16(21):13399–13416

    Article  CAS  Google Scholar 

  129. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  130. Wu Q, Wang S, Wang L, Liu F, Lin CJ, Zhang L et al (2014) Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Sci Total Environ 496:668–677

    Article  CAS  Google Scholar 

  131. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi. China Ecotox Environ Safe 141:17–24

    Article  CAS  Google Scholar 

  132. Yin D, He T, Yin R, Zeng L (2018) Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area. China J Environ Sci 68:194–205

    Article  CAS  Google Scholar 

  133. Zaferani S, Biester H (2021) Mercury accumulation in marine sediments–a comparison of an upwelling area and two large river mouths. Front Mar Sci 8:732720. https://doi.org/10.3389/fmars.2021.732720/full

  134. Zettlizer M, Scholer HF, Eiden R, Falter R (1997) Distribution of elemental, inorganic and organic mercury in north german gas condensates and formation brines. In: Society of petroleum engineers ınternational symposium on oilfield chemistry. Houston, Texas

    Google Scholar 

  135. Zhao L, Qiu GL, Anderson CWN, Meng B, Wang DY, Shang LH, Yan H, Feng X (2016) Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environ Pollut 215:1–9

    Article  CAS  Google Scholar 

  136. Zheng N, Liu J, Wang Q, Liang Z (2011) Mercury contamination due to zinc smelting and chlor-alkali production in NE China. Appl Geochem 26(2):188–193

    Article  CAS  Google Scholar 

  137. Zheng Y, Jensen AD, Windelin C, Jensen F (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energ Combust 38:599–629

    Article  CAS  Google Scholar 

  138. Zhu W, Li Z, Li P, Yu B, Lin CJ, Sommar J et al (2018) Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environ Pollut 242:718–727

    Article  CAS  Google Scholar 

  139. Zolkos S, Krabbenhoft DP, Suslova A, Tank SE, McClelland JW, Spencer RGM, Shiklomanov A, Zhulidov AV, Gurtovaya T, Zimov N, Zimov S, Mutter EA, Kutny L, Amos E, Holmes RM (2020) Mercury export from Arctic great rivers. Environ Sci Technol 54(7):4140–4148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authros are expressing their immense gratitude to all the persons involved in the preparation of the final report of the “Golbal Mercury Assessment 2018” and sharing this report with all the people across the globe. The authors also thank all the researchers and scientists all over the world who are working to explore the source and distribution of Hg in the environment and are warning against reducing Hg exposure to humans and wild life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihab Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, S., Khanom, S., Islam, M.R. (2024). Source and Distribution of Mercury in Environment—A Review. In: Kumar, N. (eds) Mercury Toxicity Mitigation: Sustainable Nexus Approach. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-48817-7_1

Download citation

Publish with us

Policies and ethics