Skip to main content

Surface Modification and Engineering of Nanoscale Absorbent and Their Composite

  • Chapter
  • First Online:
Carbon Nanomaterials and their Composites as Adsorbents

Part of the book series: Carbon Nanostructures ((CARBON))

  • 46 Accesses

Abstract

Surface modification and engineering is the science that deals with modification involving the surface area of any material especially solids. The act of surface modification is done by bringing changes in physical, chemical or biological characteristics that are different from the original ones. The main objective of this technique is to improve performance of materials that interacts with the environment as the interaction can degrade the surface over a period of time. The significant improvement required would be to resist damages that are caused by wear, corrosion, fatigue, creep, etc. A rising demand for an alternative material for applications in engineering sectors for the want of minimizing structural weight has resulted in a prospective growth of composites. The demand is due to requirement of reduction in structural weight that would create a tremendous positive impact on energy efficiency. The major challenge in engineering sector is to achieve a competitive structure as light as possible. The materials that are micro nano-sized, incorporates many special properties that are widely used in various fields. An adsorbent is a substance used to adsorb particles from liquid or gas resulting in the betterment of the materials, which can harm the environment. The structure of activated carbon adsorbents with its pore size and surface properties aids to provide high efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klabunde, K.J., Richards, R.M. (eds.): Nanoscale Materials in Chemistry. Wiley (2009)

    Google Scholar 

  2. Wang, Z.L.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12(17), 1295–1298 (2000)

    Article  CAS  Google Scholar 

  3. Kalfa, O.M., Yalçınkaya, Ö., Türker, A.R.: Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J. Hazard. Mater. 166(1), 455–461 (2009)

    Google Scholar 

  4. Khajeh, M., Laurent, S., Dastafkan, K.: Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113(10), 7728–7768 (2013)

    Article  CAS  Google Scholar 

  5. Cui, Y., et al.: ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution. Microchem. J. 83(1), 35–41 (2006)

    Google Scholar 

  6. Türker, A.R.: New sorbents for solid-phase extraction for metal enrichment. Clean-Soil, air, water 35(6), 548–557 (2007)

    Article  Google Scholar 

  7. Lemos, V.A., et al.: New materials for solid‐phase extraction of trace elements. Appl. Spectroscopy Rev. 43(4), 303–334 (2008)

    Google Scholar 

  8. Zhang, L., et al.: Studies on the capability and behavior of adsorption of thallium on nano-Al2O3. J. Hazard. Mater. 157(2–3), 352–357 (2008)

    Google Scholar 

  9. Kim, B.-H., et al.: Preparation of TiO2 thin film by liquid sprayed mist CVD method. Mater. Sci. Eng.: B 107(3), 289–294 (2004)

    Google Scholar 

  10. Wu, X.-M., et al.: Preparation, characterization, and low-temperature heat capacities of nanocrystalline TiO2 ultrafine powder. J. Solid State Chem. 156(1), 220–224 (2001)

    Google Scholar 

  11. Thiruchitrambalam, M., Palkar, V.R., Gopinathan, V.: Hydrolysis of aluminium metal and sol–gel processing of nano alumina. Mater. Lett. 58(24), 3063–3066 (2004)

    Article  CAS  Google Scholar 

  12. Tagmatarchis, N., (ed.): Advances in Carbon Nanomaterials: Science and Applications. CRC Press (2012)

    Google Scholar 

  13. Liu, Y., Liang, P., Guo, L.: Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68(1), 25–30 (2005)

    Google Scholar 

  14. Mirkin, C.A., et al.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609 (1996)

    Google Scholar 

  15. Taleb, A., Petit, C., Pileni, M.P.: Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem. Mater. 9(4), 950–959 (1997)

    Article  CAS  Google Scholar 

  16. Ascencio, J.A., et al.: Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior. Microsc. Res. Tech. 69(7), 522–530 (2006)

    Article  CAS  Google Scholar 

  17. Osaka, T., et al.: Synthesis of magnetic nanoparticles and their application to bioassays. Anal. Bioanal. Chem. 384, 593–600 (2006)

    Google Scholar 

  18. Zhong, W.: Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem. 394, 47–59 (2009)

    Article  CAS  Google Scholar 

  19. Howard, A.G., Statham, P.J.: Inorganic Trace Analysis: Philosophy and Practice. Wiley Incorporated (1993)

    Google Scholar 

  20. Wu, C.-S., Liu, F.-K., Ko, F.-H.: Potential role of gold nanoparticles for improved analytical methods: an introduction to characterizations and applications. Anal. Bioanal. Chem. 399, 103–118 (2011)

    Article  CAS  Google Scholar 

  21. Morozov, I.D., Trusov, L.I., Chizhik, S.P.: Ul’tradispersnyemetallicheskiesredy (Ultradispersed Metal Media). Atomizdat, Moscow (1977)

    Google Scholar 

  22. O’Brien, S., Brus, L., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123(48), 12085–12086 (2001)

    Article  CAS  Google Scholar 

  23. Hyeon, T., et al.: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. The J. Phys. Chem. B 106(27), 6831–6833 (2002)

    Google Scholar 

  24. Mao, Y., Banerjee, S., Wong, S.S.: Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 125(51), 15718–15719 (2003)

    Article  CAS  Google Scholar 

  25. Song, Q., John Zhang, Z.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126(19), 6164–6168 (2004)

    Google Scholar 

  26. Gubin, S.P.: What is nanoparticle? Development trends for nanochemistry and nanotechnology. Ross. Khim. Zh. 44(6), 23 (2000)

    CAS  Google Scholar 

  27. Gubin, S.P., et al.: Magnetic nanoparticles: preparation, structure and properties. Russian Chem. Rev. 74(6), 489 (2005)

    Google Scholar 

  28. Harris, P.J.F.: Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge, UK (1999)

    Google Scholar 

  29. Popov, V.N.: Carbon nanotubes: properties and application. Mater. Sci. Eng. R. Rep. 43(3), 61–102 (2004)

    Article  Google Scholar 

  30. Karwa, M., Iqbal, Z., Mitra, S.: Scaled-up self-assembly of carbon nanotubes inside long stainless steel tubing. Carbon 44(7), 1235–1242 (2006)

    Google Scholar 

  31. Chung, J., Lee, J.: Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens. Actuators, A 104(3), 229–235 (2003)

    Article  CAS  Google Scholar 

  32. Brukh, R., Mitra, S.: Mechanism of carbon nanotube growth by CVD. Chem. Phys. Lett. 424(1–3), 126–132 (2006)

    Google Scholar 

  33. Brukh, R., Sae-Khow, O., Mitra, S.: Stabilizing single-walled carbon nanotubes by removal of residual metal catalysts. Chem. Phys. Lett. 459(1–6), 149–152 (2008)

    Google Scholar 

  34. MacKenzie, K., Dunens, O., Harris, A.T.: A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)

    Article  CAS  Google Scholar 

  35. Heras, A., et al.: Electrochemical purification of carbon nanotube electrodes. Electrochem. Commun. 11(7), 1535–1538 (2009)

    Google Scholar 

  36. Hu, H., et al.: Nitric acid purification of single-walled carbon nanotubes. The J. Phys. Chem. B 107(50), 13838–13842 (2003)

    Google Scholar 

  37. Wang, Y., Iqbal, Z., Malhotra, S.V.: Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett. 402(1–3), 96–101 (2005)

    Google Scholar 

  38. Aitchison, T.J., et al.: Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. The J. Phys. Chem. C 111(6), 2440–2446 (2007)

    Google Scholar 

  39. Avilés, F., et al.: Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47(13), 2970–2975 (2009)

    Article  Google Scholar 

  40. Wang, Y., Iqbal, Z., Mitra, S.: Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43(5), 1015–1020 (2005)

    Google Scholar 

  41. Wang, Y., Iqbal, Z., Mitra, S.: Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J. Am. Chem. Soc. 128(1), 95–99 (2006)

    Google Scholar 

  42. Wang, Y., Iqbal, Z., Mitra, S.: Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite. Carbon 44(13), 2804–2808 (2006)

    Google Scholar 

  43. Bandow, S., et al.: Purification of single-wall carbon nanotubes by microfiltration. The J. Phys. Chem. B 101(44), 8839–8842 (1997)

    Google Scholar 

  44. Dillon, A.C., et al.: A simple and complete purification of single‐walled carbon nanotube materials. Adv. Mater. 11(16), 1354–1358 (1999)

    Google Scholar 

  45. Rinzler, A.G., et al.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A: Mater. Sci. Process. 67(1) (1998)

    Google Scholar 

  46. Xu, X., et al.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004)

    Google Scholar 

  47. Valcarcel, M., et al.: Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem. 382, 1783–1790 (2005)

    Google Scholar 

  48. Doorn, S.K., et al.: Capillary electrophoresis separations of bundled and individual carbon nanotubes. The J. Phys. Chem. B 107(25), 6063–6069 (2003)

    Google Scholar 

  49. Doorn, S.K., et al.: High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124(12), 3169–3174 (2002)

    Google Scholar 

  50. Liu, J., et al.: Fullerene pipes. Science 280(5367), 1253–1256 (1998)

    Google Scholar 

  51. Matarredona, O., et al.: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The J. Phys. Chem. B 107(48), 13357–13367 (2003)

    Google Scholar 

  52. Lin, Y., et al.: Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004)

    Google Scholar 

  53. Dyke, C.A., Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108(51), 11151–11159 (2004)

    Article  CAS  Google Scholar 

  54. Vazquez, E., Prato, M.: Carbon nanotubes and microwaves: interactions, responses, and applications. Acsnano 3(12), 3819–3824 (2009)

    CAS  Google Scholar 

  55. Fang, X.-L., et al.: From self-assembled microspheres to self-templated nanotubes: morphologies and properties of sulfur-bridged fluoranthene-based organic materials. Chem. Mater. 21(24), 5763–5771 (2009)

    Google Scholar 

  56. Meng, L., Fu, C., Lu, Q.: Advanced technology for functionalization of carbon nanotubes. Progr. Nat. Sci. 19(7), 801–810 (2009)

    Google Scholar 

  57. Wang, S.: Optimum degree of functionalization for carbon nanotubes. Curr. Appl. Phys. 9(5), 1146–1150 (2009)

    Article  Google Scholar 

  58. Niyogi, S., et al.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1105–1113 (2002)

    Article  CAS  Google Scholar 

  59. Zhang, L., et al.: Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem. Mater. 16(11), 2055–2061 (2004)

    Google Scholar 

  60. Hirsch, A.: Functionalization of single-walled carbon nanotubes. AngewandteChemie Int. Edition 41(11), 1853–1859 (2002)

    Article  CAS  Google Scholar 

  61. Banerjee, S., Kahn, M.G.C., Wong, S.S.: Rational chemical strategies for carbon nanotube functionalization. Chem.–A Eur. J. 9(9), 1898–1908 (2003)

    Google Scholar 

  62. Liu, Y., Li, Y., Yan, X.-P.: Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv. Func. Mater. 18(10), 1536–1543 (2008)

    Article  CAS  Google Scholar 

  63. Lu, C., Chiu, H.: Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139(3), 462–468 (2008)

    Article  CAS  Google Scholar 

  64. Xiao, Y., et al.: Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9, 1–11 (2009)

    Google Scholar 

  65. Ntim, S.A., et al.: Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355(2), 383–388 (2011)

    Google Scholar 

  66. Hylton, K., Sangwan, M., Mitra, S.: Microscale membrane extraction of diverse antibiotics from water. Analyticachimicaacta 653(1), 116–120 (2009)

    Google Scholar 

  67. Bae, C., et al.: Template directed oxide nanotubes: synthesis, characterization, and applications. Chem. Mater 20, 756–767 (2008)

    Article  CAS  Google Scholar 

  68. Moynihan, S., et al.: Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mater. 20(3): 996–1003 (2008)

    Google Scholar 

  69. Awasthi, K., Srivastava, A., Srivastava, O.N.: Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5(10), 1616–1636 (2005)

    Google Scholar 

  70. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Google Scholar 

  71. Bethune, D.S., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    Google Scholar 

  72. Raidongia, K.: Synthesis and characterization of inorganic nanorods and nanotubes and Kirkendall effect-induced transformations of metal nanowires of oxide or chalcogenide nanotubes. Diss. Jawaharlal Nehru Centre for Advanced Scientific Research (2007)

    Google Scholar 

  73. Loiseau, A., Pascard, H.: Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem. Phys. Lett. 256(3), 246–252 (1996)

    Article  CAS  Google Scholar 

  74. Niu, C., Lu, Y.Z., Lieber, C.M.: Experimental realization of the covalent solid carbon nitride. Science 261(5119), 334–337 (1993)

    Article  CAS  Google Scholar 

  75. Thess, A., et al.: Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    Google Scholar 

  76. Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016)

    Article  CAS  Google Scholar 

  77. Yahya, N., et al.: Synthesis of carbon nanostructures by CVD method. In: Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, pp. 23–49 (2011)

    Google Scholar 

  78. Baker, R.T.K.: Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)

    Article  CAS  Google Scholar 

  79. Cassell, A.M., et al.: Large scale CVD synthesis of single-walled carbon nanotubes. The J. Phys. Chem. B 103(31), 6484–6492 (1999)

    Google Scholar 

  80. Su, M., Zheng, B., Liu, J.: A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321–326 (2000)

    Google Scholar 

  81. Palizdar, M., et al.: Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes. J. Nanoscience and nanotechnology 11(6), 5345–5351 (2011)

    Google Scholar 

  82. Prasek, J., et al.: Methods for carbon nanotubes synthesis. J. Mater. Chem. 21(40), 15872–15884 (2011)

    Google Scholar 

  83. Parkansky, N., et al.: Single-pulse arc production of carbon nanotubes in ambient air. J. Phys. D Appl. Phys. 37(19), 2715 (2004)

    Article  CAS  Google Scholar 

  84. Wu, Y., et al.: In situ synthesis of graphene/single-walled carbon nanotube hybrid material by arc-discharge and its application in supercapacitors. Nano Energy 1(6), 820–827 (2012)

    Google Scholar 

  85. Zhong, J., Isayev, A.I., Zhang, X.: Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphenenanoplates and carbon black. Eur. Polymer J. 80, 16–39 (2016)

    Article  CAS  Google Scholar 

  86. Tolvanen, A., et al.: Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation. Phys. Rev. B 79(12), 125430 (2009)

    Google Scholar 

  87. Rehman, A., Park, M., Park, S.-J.: Current progress on the surface chemical modification of carbonaceous materials. Coatings 9(2), 103 (2019)

    Article  Google Scholar 

  88. Abuilaiwi, F.A., et al.: Modification and functionalization of multiwalled carbon nanotube (MWCNT) via Fischer esterification. The Arab. J. Sci. Eng. 35(1), 37–48 (2010)

    Google Scholar 

  89. Ma, P.C., Kim, J.-K., Tang, B.Z.: Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44(15), 3232–3238 (2006)

    Google Scholar 

  90. Kim, S.W., et al.: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1), 3–33 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Jayavel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aravind, D., Diwahar, P., Bharathi, M., Prakalathan, K., Prasanth, M.S., Jayavel, S. (2024). Surface Modification and Engineering of Nanoscale Absorbent and Their Composite. In: Tharini, J., Thomas, S. (eds) Carbon Nanomaterials and their Composites as Adsorbents. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-48719-4_6

Download citation

Publish with us

Policies and ethics