Skip to main content

Two-Dimensional Carbon-Based Materials for Sorption of Selected Aromatic Compounds in Water

  • Chapter
  • First Online:
Carbon Nanomaterials and their Composites as Adsorbents

Part of the book series: Carbon Nanostructures ((CARBON))

  • 47 Accesses

Abstract

The availability of clean water is of pressing concern in developing countries and has been a key area of focus for research and development worldwide. The sixth Sustainable Development Goal of the United Nations emphasizes the need for clean water. Aromatic hydrocarbons are emerging organic contaminants that are being found frequently in drinking water, municipal wastewater, and surface water. Conventional wastewater treatment plants have been shown to have limited efficiency in removing these trace pollutants from water. Due to advantages including cost, effectiveness, simplicity of use, and reusability, the adsorption process is recognized as a promising water remediation technology for aromatic compound removal. Advanced carbon-based materials discussed in this chapter are two-dimensional materials, such as graphene and carbon nanotubes, and their composites. Their performance towards remediating monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) was explored using recent published results between 2007 and 2022 from reputable sources. The concluding section of the chapter presents recommendations for bridging knowledge gaps, as well as suggestions for future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honda, M., Suzuki, N.: Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17(4), 1363 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furukawa, S., et al.: Double aromaticity arising from σ- and π-rings. Commun. Chem. 1(1), 60 (2018)

    Article  Google Scholar 

  3. Ololade, I.A., et al.: Bioavailability of polycyclic aromatic hydrocarbons (PAHs) and Environmental Risk (ER) Assessment: the case of the Ogbese river, Nigeria. Reg. Stud. Mar. Sci. 9, 9–16 (2017)

    Google Scholar 

  4. Adeola, A.O., Forbes, P.B.C.: Antiretroviral drugs in african surface waters: prevalence, analysis, and potential remediation. Environ. Toxicol. Chem. 42(2), 247–262 (2021)

    Article  Google Scholar 

  5. Adeola, A.O., et al.: Facile synthesis of graphene wool doped with oleylamine-capped silver nanoparticles (GW-αAgNPs) for water treatment applications. Appl. Water Sci. 11(11), 172 (2021)

    Article  CAS  Google Scholar 

  6. Adeola, A.O., Forbes, P.B.C.: Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: existing concepts, emerging trends, and future prospects. Water Environ. Res. 93(3), 343–395 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Adeola, A.O., de Lange, J., Forbes, P.B.C.: Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: kinetic, equilibrium, thermodynamic and computational studies. Appl. Surf. Sci. Adv. 6, 100157 (2021)

    Article  Google Scholar 

  8. Adeola, A.O., Forbes, P.B.C.: Assessment of reusable graphene wool adsorbent for the simultaneous removal of selected 2–6 ringed polycyclic aromatic hydrocarbons from aqueous solution. Environ. Technol. 43(8), 1255–1268 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. Pathak, S., et al.: A state-of-the-art review of various adsorption media employed for the removal of toxic Polycyclic aromatic hydrocarbons (PAHs): An approach towards a cleaner environment. J. Water Proc. Eng. 47, 102674 (2022)

    Article  Google Scholar 

  10. Ilyas, M., Ahmad, W., Khan, H.: Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. Water Sci. Technol. 84(3), 609–631 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. Sabzehmeidani, M.M., et al.: Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater. Adv. 2(2), 598–627 (2021)

    Article  CAS  Google Scholar 

  12. Rehman, A., et al.: Current progress on the surface chemical modification of carbonaceous materials. Coatings 9, 103 (2019)

    Article  Google Scholar 

  13. Adeola, A.O., Forbes, P.B.C.: Influence of natural organic matter fractions on PAH sorption by stream sediments and a synthetic graphene wool adsorbent. Environ. Technol. Innov. 21, 101202 (2021)

    Article  CAS  Google Scholar 

  14. Ololade, I.A., et al.: In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives. J. Environ. Chem. Eng. 6(2), 3485–3494 (2018)

    Article  CAS  Google Scholar 

  15. Adeola, A.O., Forbes, P.B.C.: Optimization of the sorption of selected polycyclic aromatic hydrocarbons by regenerable graphene wool. Water Sci. Technol. 80(10), 1931–1943 (2018)

    Article  Google Scholar 

  16. Astrahan, P.: Monocyclic aromatic hydrocarbons (phthalates and BTEX) and aliphatic components in the SE Mediterranean costal Sea-surface microlayer (SML): Origins and phase distribution analysis. Mar. Chem. 205, 56–69 (2018)

    Article  CAS  Google Scholar 

  17. USEPA.: U.S. Environmental Protection Agency Office of the Science Advisor Risk Assessment Forum. Framework for Human Health Risk Assessment to Inform Decision Making, April 5, 2012 (2014)

    Google Scholar 

  18. Abdel-Shafy, H.I., Mansour, M.S.M.: A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25(1), 107–123 (2016)

    Article  Google Scholar 

  19. Maletic, S.P., et al.: State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. J. Hazard. Mater. 365, 67–482 (2019)

    Article  Google Scholar 

  20. Ali, I., et al.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Schoonraad, G., et al.: Synthesis and optimisation of a novel graphene wool material by atmospheric pressure chemical vapour deposition. J. Mater. Sci. 55, 545–564 (2020)

    Article  CAS  Google Scholar 

  22. Kubheka, G., Adeola, A.O., Forbes, P.B.C.: Hexadecylamine functionalised graphene quantum dots as suitable nano-adsorbents for phenanthrene removal from aqueous solution. RSC Adv. 12(37), 23922–23936 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, T., Tian, W., Qiao, K., Zhao, J., Chu, M., Du, Z., et al.: Adsorption behaviors of polycyclic aromatic hydrocarbons and oxygen derivatives in wastewater on N-doped reduced graphene oxide. Sep. Purif. Technol. 254, 117565 (2021)

    Article  CAS  Google Scholar 

  24. Rowley-Neale, S.J., et al.: An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 10, 218–226 (2018)

    Article  Google Scholar 

  25. Lamichhane, S., Bal Krishna, K.C., Sarukkalige, R.: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Wu, T., et al.: Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem. Eng. J. 173(1), 144–149 (2011)

    Article  CAS  Google Scholar 

  27. Zhou, P.P., Zhang, R.Q.: Physisorption of benzene derivatives on graphene: critical roles of steric and stereoelectronic effects of the substituent. Phys. Chem. Chem. Phys. 17(18), 12185–12193 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Pourmand, S., Abdouss, M., Rashidi, A.M.: Preparation of nanoporous graphene via nanoporous zinc oxide and its application as a nanoadsorbent for benzene, toluene and xylenes removal. Int. J. Environ. Res. 9(4), 1269–1276 (2015)

    CAS  Google Scholar 

  29. Azizi, A., et al.: Adsorption performance of modified graphene oxide nanoparticles for the removal of toluene, ethylbenzene, and xylenes from aqueous solution. Desalin. Water Treat. 57(59), 28806–28821 (2016)

    Article  CAS  Google Scholar 

  30. Ji, L., et al.: Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution. J. Environ. Qual. 42(1), 191–198 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Apul, O.G., et al.: Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Res. 47(4), 1648–1654 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Sun, Y., et al.: Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chem. Asian J. 8(11), 2755–2761 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. Yang, X., Li, J., et al.: Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids Surf. A Physicochem. Eng. Asp. 422, 118–125 (2013)

    Google Scholar 

  34. Zhang, C., et al.: Adsorption of polycyclic aromatic hydrocarbons (Fluoranthene and Anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation. ACS Appl. Mater. Interf. 5(11), 4783–4790 (2013)

    Article  CAS  Google Scholar 

  35. Wang, J., Chen, Z., Chen, B.: Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 48(9), 4817–4825 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, J., et al.: Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ. Sci. Technol. 48(1), 331–339 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Yang, K., Chen, B., Zhu, L.: Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci. Rep. 5, 11641 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, X., et al.: Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2(23), 8821–8826 (2012)

    Article  CAS  Google Scholar 

  39. Xu, L., et al.: Efficient synthesis of high quality double walled carbon nanotubes and their cost-effective properties. New J. Chem. 46(39), 18724–18731 (2022)

    Article  CAS  Google Scholar 

  40. Tilmaciu, C.M., Morris, M.C.: Carbon nanotube biosensors. Front. Chem. 3, 59 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Golnabi, H.: Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Sci. Iran. 19(6), 2012–2022 (2012)

    Article  Google Scholar 

  42. Poudel, Y.R., Li, W.: Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater. Today Phys. 7, 7–34 (2018)

    Article  Google Scholar 

  43. Lu, C., Su, F., Hu, S.: Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl. Surf. Sci. 254(21), 7035–7041 (2008)

    Article  CAS  Google Scholar 

  44. Abedi, Z., et al.: The effect of natural organic compounds on the adsorption of toluene and ethylene benzene on MWCNT. J. Environ. Health Sci. Eng. 17(2), 1055–1065 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, W., Duan, L., Zhu, D.: Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41(24), 8295–8300 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Wibowo, N., et al.: Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater. 146(1), 237–242 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Chin, C.J.M., et al.: Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon 45(6), 1254–1260 (2007)

    Article  CAS  Google Scholar 

  48. Yu, F., et al.: Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146, 162–172 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Anjum, H., et al.: Investigation of green functionalization of multiwall carbon nanotubes and its application in adsorption of benzene, toluene & p-xylene from aqueous solution. J. Clean. Prod. 221, 323–338 (2019)

    Article  CAS  Google Scholar 

  50. Alves, D.C.D.S., et al.: Chapter 18—carbon nanotube-based materials for environmental remediation processes. In: Giannakoudakis, D., Meili, L., Anastopoulos, I. (eds.) Advanced Materials for Sustainable Environmental Remediation. Elsevier, pp. 475–513 (2022)

    Google Scholar 

  51. Agasti, N., et al.: Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: a review. Appl. Surf. Sci. Adv. 10, 100270 (2022)

    Article  Google Scholar 

  52. Yahyazadeh, A., Khoshandam, B.: Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron–molybdenum alloy thin layer catalysts. Results Phys. 7, 3826–3837 (2017)

    Article  Google Scholar 

  53. Mahgoub, H.A.: Nanoparticles used for extraction of polycyclic aromatic hydrocarbons. J. Chem. 2019(4), 816–849 (2019)

    Google Scholar 

  54. Menezes, H.C., et al.: Magnetic N-doped carbon nanotubes: a versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal. Chim. Acta 873, 51–56 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia B. C. Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeola, A.O., Forbes, P.B.C. (2024). Two-Dimensional Carbon-Based Materials for Sorption of Selected Aromatic Compounds in Water. In: Tharini, J., Thomas, S. (eds) Carbon Nanomaterials and their Composites as Adsorbents. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-48719-4_14

Download citation

Publish with us

Policies and ethics