Skip to main content

Iterative Refinement Algorithm for Liver Segmentation Ground-Truth Generation Using Fine-Tuning Weak Labels for CT and Structural MRI

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Abstract

Medical image segmentation is indicated in a number of treatments and procedures, such as detecting pathological changes and organ resection. However, it is a time-consuming process when done manually. Automatic segmentation algorithms like deep learning methods overcome this hurdle, but they are data-hungry and require expert ground-truth annotations, which is a limitation, particularly in medical datasets. On the other hand, unannotated medical datasets are easier to come by and can be used in several methods to learn ground-truth masks. In this paper, we aim to utilize across-modalities transfer learning to leverage the knowledge learned on a large publicly available and expertly annotated computed tomography (CT) dataset to a small unannotated dataset in a different modality magnetic resonance (MR). Moreover, we prove that quickly generated weak annotations can be improved iteratively using a pre-trained U-Net model and will approach the ground truth masks through iterations. This methodology was proven qualitatively using an in-house MR dataset where professionals were asked to choose between model output and weak annotations. They chose model output 93% \(\sim \) 94% of the time. Moreover, we prove it quantitatively using the publicly available annotated Combined (CT-MR) Healthy Abdominal Organ Segmentation (CHAOS) dataset. The weak annotation showed improvements across three iterations from 87.5% to 92.2% Dice score when compared to the ground truth annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baues, M.: Fibrosis imaging: Current concepts and future directions. Adv. Drug Deliv. Rev.121, 9–26, 2017. ISSN 0169–409X. https://doi.org/10.1016/j.addr.2017.10.013. Fibroblasts and extracellular matrix: Targeting and therapeutic tools in fibrosis and cancer

  2. Bataller, R., Brenner, D.: Liver fibrosis. J. Clin. Invest. 115, 209–18 (2005). https://doi.org/10.1172/JCI24282

  3. Tanaka, M., Miyajima, A.: Liver regeneration and fibrosis after inflammation. Inflamm. Regeneration 36, 12 (2016). https://doi.org/10.1186/s41232-016-0025-2

    Article  Google Scholar 

  4. Moon, A., Singal, A., Tapper, E.: Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol. 18, 08 (2019). https://doi.org/10.1016/j.cgh.2019.07.060

    Article  Google Scholar 

  5. Acharya, P., Chouhan, K., Weiskirchen, S., Weiskirchen, R.: Cellular mechanisms of liver fibrosis. Front. Pharmacol. 12 (2021). ISSN 1663–9812. https://doi.org/10.3389/fphar.2021.671640

  6. Gotra, A., et al.: Liver segmentation: indications, techniques and future directions. Insights Imaging 8, 06 (2017). https://doi.org/10.1007/s13244-017-0558-1

    Article  Google Scholar 

  7. Gul, S., Khan, M.S., Bibi, A., Khandakar, A., Ayari, M., Chowdhury, M.: Deep learning techniques for liver and liver tumor segmentation: a review. Comput. Bio. Med. 147, 105620 (2022). https://doi.org/10.1016/j.compbiomed.2022.105620

  8. LeCun, Y. Bengio, Y., Geoffrey Hinton, G.: Deep learning. Nature 521, 436–44 (2015). https://doi.org/10.1038/nature14539

  9. Aggarwal, C.C.: Neural networks and deep learning (2018)

    Google Scholar 

  10. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021)

    Google Scholar 

  11. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). ISSN 1361–8415. https://doi.org/10.1016/j.media.2017.07.005.

  12. Willemink, M.J., et al.: Preparing medical imaging data for machine learning. Radiology 295(1), 4–15 (2020). PMID: 32068507

    Google Scholar 

  13. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020). https://doi.org/10.1016/j.media.2020.101693

  14. Zhang, L., et al.: When unseen domain generalization is unnecessary? rethinking data augmentation (2019)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Wang, K., et al.: Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. Radiology: Artif. Intell. 1, 180022 (2019). https://doi.org/10.1148/ryai.2019180022

  17. Zhou, B., Augenfeld, Z., Chapiro, S.J., Zhou, K., Liu, C., Duncan, J.S.: Anatomy-guided multimodal registration by learning segmentation without ground truth: Application to intraprocedural CBCT/MR liver segmentation and registration. Med. Image Anal. 71, 102041 (2021). ISSN 1361–8415. https://doi.org/10.1016/j.media.2021.102041

  18. Bilic, P., et al.: The liver tumor segmentation benchmark (lits). arxiv:1901.04056 (2019)

  19. Kavur, A.E., Selver, M.A., Dicle, O., Barış, M., Gezer, N.S.: CHAOS - combined (CT-MR) healthy abdominal organ segmentation challenge data (2019). https://doi.org/10.5281/zenodo.3431873

  20. Zhang, L., Gopalakrishnan, V., Lu, L., Summers, R.M., Moss, J., Yao, J.: Self-learning to detect and segment cysts in lung CT images without manual annotation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1100–1103 (2018). https://doi.org/10.1109/ISBI.2018.8363763

  21. Zhang, T., Yu, L., Hu, N., Lv, S., Gu, S.: Robust Medical Image Segmentation from Non-expert Annotations with Tri-network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 249–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_25

    Chapter  Google Scholar 

  22. Getao, D., Cao, X., Liang, J., Chen, X., Zhan, Y.: Medical image segmentation based on U-Net: a review. J. Imaging Sci. Technol. 64, 03 (2020). https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508

    Article  Google Scholar 

  23. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021). https://doi.org/10.1109/ACCESS.2021.3086020

    Article  Google Scholar 

  24. MeVis Medical Solutions AG. Mevislab logo (2008). https://www.mevislab.de/

  25. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings, pp. 958–963 (2003). https://doi.org/10.1109/ICDAR.2003.1227801

  26. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (2004)

    Article  Google Scholar 

  27. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1): 12–49 (1988). ISSN 0021–9991. https://doi.org/10.1016/0021-9991(88)90002-2

  28. Bertels, J., et al.: Optimizing the dice score and jaccard index for medical image segmentation: theory and practice. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 92–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_11

    Chapter  Google Scholar 

Download references

Acknowledgment

This project was supported by the Science and Technology Fund Institute (STDF), Project ID 45891- EG-US Cycle 20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merna Bibars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salah, P.E. et al. (2024). Iterative Refinement Algorithm for Liver Segmentation Ground-Truth Generation Using Fine-Tuning Weak Labels for CT and Structural MRI. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics