Skip to main content

Fire and Smoke Image Recognition

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting

Abstract

In combustion reactions, organic fuels (containing Carbon compounds) generally release a combination of signatures of heat, light, gases, and soot particulates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Wang, X. He, J.-X. Wang et al., Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines. Energy Convers. Manag. 51, 908–917 (2010)

    Article  Google Scholar 

  2. Y. Wang, Y. Yu, X. Zhu, Z. Zhang, Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel 270, 117486 (2020)

    Article  Google Scholar 

  3. S. Sarkar, K.G. Lore, S. Sarkar et al., Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, in Annual Conference of the PHM Society (2015)

    Google Scholar 

  4. D.T. Gottuk, J.A. Lynch, S.L. Rose-Pehrsson et al., Video image fire detection for shipboard use. Fire Saf. J. 41, 321–326 (2006)

    Article  Google Scholar 

  5. T.X. Tung, J.-M. Kim, An effective four-stage smoke-detection algorithm using video images for early fire-alarm systems. Fire Saf. J. 46, 276–282 (2011)

    Article  Google Scholar 

  6. Z. Wang, T. Zhang, X. Huang, Predicting real-time fire heat release rate by flame images and deep learning, in Proceedings of the Combustion Institute (2022)

    Google Scholar 

  7. T. Zhang, Z. Wang, Y. Zeng et al., Building artificial-intelligence digital fire (AID-Fire) system: a real-scale demonstration. J. Build. Eng. 62, 105363 (2022)

    Article  Google Scholar 

  8. Z. Wang, T. Zhang, X. Wu, X. Huang, Predicting transient building fire based on external smoke images and deep learning. J. Build. Eng. 47, 103823 (2022). https://doi.org/10.1016/j.jobe.2021.103823

    Article  Google Scholar 

  9. J. Wang, W.C. Tam, Y. Jia et al., P-Flash–A machine learning-based model for flashover prediction using recovered temperature data. Fire Saf. J. 122, 103341 (2021). https://doi.org/10.1016/j.firesaf.2021.103341

    Article  Google Scholar 

  10. M.Z. Naser, C. Lautenberger, E. Kuligowski, Special Issue on “Smart Systems in Fire Engineering.” Fire Technol. 57, 2737–2740 (2021). https://doi.org/10.1007/s10694-021-01196-w

  11. H. Mozaffari, Y. Li, Y. Ko et al, Detecting flashover in a room fire based on the sequence of thermal infrared images using convolutional neural networks. Canadian AI 2022 (2022)

    Google Scholar 

  12. Y. Li, Y. Ko, W. Lee, RGB image-based hybrid model for automatic prediction of flashover in compartment fires. Fire Saf. J. 132, 103629 (2022)

    Article  Google Scholar 

  13. B. Kim, J. Lee, A video-based fire detection using deep learning models. Appl. Sci. 9, 2862 (2019)

    Article  Google Scholar 

  14. F.N. Simon, G.D. Rork, Ionization-type smoke detectors. Rev. Sci. Instrum. 47, 74–80 (1976)

    Article  Google Scholar 

  15. K. Lee, Y.-S. Shim, Y.G. Song et al., Highly sensitive sensors based on metal-oxide nanocolumns for fire detection. Sensors 17, 303 (2017)

    Article  Google Scholar 

  16. (2023) ORRProtection Co. https://www.orrprotection.com/detection/video-smoke-detection

  17. K. Muhammad, J. Ahmad, I. Mehmood et al., Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6, 18174–18183 (2018)

    Article  Google Scholar 

  18. G. Yadav, V. Gupta, V. Gaur, M. Bhattacharya, Optimized flame detection using image processing based techniques. Indian J. Comput. Sci. Eng. 3, 202–211 (2012)

    Google Scholar 

  19. N. Rahmatov, A. Paul, F. Saeed, H. Seo, Realtime fire detection using CNN and search space navigation. J. Real-Time Image Proc. 18, 1331–1340 (2021)

    Article  Google Scholar 

  20. J.A. Milke, Monitoring multiple aspects of fire signatures for discriminating fire detection. Fire Technol. 35, 195–209 (1999)

    Article  Google Scholar 

  21. W. Kim, Y. Sivathanu, J.P. Gore, Characterization of spectral radiation intensities from standard test fires for fire detection. NIST Special Publication SP 91–106 (2001)

    Google Scholar 

  22. B.C.H.R. Hagen, J.A. Milke, The use of gaseous fire signatures as a mean to detect fires. Fire Saf. J. 34, 55–67 (2000)

    Article  Google Scholar 

  23. L. Chen, P. Mao, Y. Zhang et al., Experimental study on smoke characteristics of bifurcated tunnel fire. Tunn. Undergr. Space Technol. 98, 103295 (2020)

    Article  Google Scholar 

  24. Y. Yong, Q. Tian, L.U. Gang et al., Recent advances in flame tomography. Chin. J. Chem. Eng. 20, 389–399 (2012)

    Article  Google Scholar 

  25. C. Yuan, Z. Liu, Y. Zhang, Vision-based forest fire detection in aerial images for firefighting using UAVs, in 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE (2016), pp. 1200–1205

    Google Scholar 

  26. J.-H. Kim, S. Jo, B.Y. Lattimer, Feature selection for intelligent firefighting robot classification of fire, smoke, and thermal reflections using thermal infrared images. J. Sensors (2016)

    Google Scholar 

  27. R. Méndez-Rial, Souto-Lَpez ء, Garcيa-Dيaz A, MWIR infrared gating imaging with uncooled PbSe FPAs for surveillance applications, in Unconventional Optical Imaging. SPIE (2018), pp. 564–569

    Google Scholar 

  28. J.-H. Kim, B. Keller, B.Y. Lattimer, Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot, in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE (2013), pp. 1482–1486

    Google Scholar 

  29. K. Jindal, A. Wang, D. Thakur et al, Design and deployment of an autonomous unmanned ground vehicle for urban firefighting scenarios (2021). arXiv preprint arXiv:210703582

    Google Scholar 

  30. J.W. Starr, B.Y. Lattimer, Evaluation of navigation sensors in fire smoke environments. Fire Technol. 50, 1459–1481 (2014)

    Article  Google Scholar 

  31. J.W. Starr, Rangefinding in fire smoke environments (2016)

    Google Scholar 

  32. J.-H. Kim, J.W. Starr, B.Y. Lattimer, Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke. Fire Technol. 51, 823–845 (2015)

    Article  Google Scholar 

  33. A.M. Fernandes, A.B. Utkin, A.V. Lavrov, R.M. Vilar, Neural network based recognition of smoke signatures from lidar signals. Neural Process. Lett. 19, 175–189 (2004)

    Article  Google Scholar 

  34. A.B. Utkin, A. Fernandes, F. Simُes et al., Feasibility of forest-fire smoke detection using lidar. Int. J. Wildland Fire 12, 159–166 (2003)

    Article  Google Scholar 

  35. A.S. Olagoke, H. Ibrahim, S.S. Teoh, Literature survey on multi-camera system and its application. IEEE Access 8, 172892–172922 (2020)

    Article  Google Scholar 

  36. V. Sherstjuk, M. Zharikova, I. Sokol, Forest fire-fighting monitoring system based on UAV team and remote sensing, in 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). IEEE (2018), pp. 663–668

    Google Scholar 

  37. N. Lazaros, G.C. Sirakoulis, A. Gasteratos, Review of stereo vision algorithms: from software to hardware. Int. J. Optomechatronics 2, 435–462 (2008)

    Article  Google Scholar 

  38. R. Szeliski, Computer Vision: Algorithms and Applications (Springer Nature, 2022)

    Google Scholar 

  39. R.C. Gonzalez, Digital Image Processing (Pearson Education India, 2009)

    Google Scholar 

  40. N. O’Mahony, S. Campbell, A. Carvalho et al., Deep learning vs. traditional computer vision. in Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), vol. 1 1. (Springer, 2020), pp. 128–144

    Google Scholar 

  41. A. Garcia-Garcia, S. Orts-Escolano, S. Oprea et al., A review on deep learning techniques applied to semantic segmentation (2017). arXiv preprint arXiv:170406857

    Google Scholar 

  42. T.-Y. Lin, M. Maire, S. Belongie et al., Microsoft coco: common objects in context, in European Conference on Computer Vision (Springer, 2014), pp. 740–755

    Google Scholar 

  43. Z.-Q. Zhao, P. Zheng, S. Xu, X. Wu, Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232 (2019)

    Article  Google Scholar 

  44. Y. LeCun, Yoshua bengio, and geoffrey hinton. Deep Learn. Nat. 521, 436–444 (2015)

    Google Scholar 

  45. T.-H. Chen, P.-H. Wu, Y.-C. Chiou, An early fire-detection method based on image processing, in 2004 International Conference on Image Processing, 2004. ICIP’04. IEEE (2004), pp. 1707–1710

    Google Scholar 

  46. S. Dara, P. Tumma, Feature extraction by using deep learning: a survey, in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE (2018), pp. 1795–1801

    Google Scholar 

  47. H. Ali, M. Sharif, M. Yasmin et al., A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artif. Intell. Rev. 53, 2635–2707 (2020)

    Article  Google Scholar 

  48. L. Juan, O. Gwun, A comparison of sift, pca-sift and surf. Int. J. Image Process. (IJIP) 3, 143–152 (2009)

    Google Scholar 

  49. M.A. Chandra, S.S. Bedi, Survey on SVM and their application in image classification. Int. J. Inf. Technol. 13, 1–11 (2021)

    Google Scholar 

  50. A. Gaur, A. Singh, A.A. Kumar et al., Video flame and smoke based fire detection algorithms: a literature review. Fire Technol. 56, 1943–1980 (2020). https://doi.org/10.1007/s10694-020-00986-y

    Article  Google Scholar 

  51. D. Han, B. Lee, Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Saf. J. 44, 951–961 (2009)

    Article  Google Scholar 

  52. K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection. IEEE Trans. Circuits Syst. Video Technol. 25, 339–351 (2014)

    Article  Google Scholar 

  53. R. Chi, Z. Lu, Q. Ji, Real-time multi-feature based fire flame detection in video. IET Image Proc. 11, 31–37 (2017)

    Article  Google Scholar 

  54. K. O’Shea, R. Nash, An introduction to convolutional neural networks (2015). arXiv preprint arXiv:151108458

    Google Scholar 

  55. L. Alzubaidi, J. Zhang, A.J. Humaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)

    Article  Google Scholar 

  56. Q. Zhang, J. Xu, L. Xu, H. Guo, Deep convolutional neural networks for forest fire detection. in 2016 International Forum on Management, Education and Information Technology Application (Atlantis Press, 2016), pp. 568–575

    Google Scholar 

  57. S. Khan, K. Muhammad, S. Mumtaz et al., Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6, 9237–9245 (2019)

    Article  Google Scholar 

  58. F. Abid, A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 57, 559–590 (2021)

    Article  Google Scholar 

  59. L. He, X. Gong, S. Zhang et al., Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 434, 224–238 (2021)

    Article  Google Scholar 

  60. F. Zhang, W. Qin, Y. Liu et al., A dual-channel convolution neural network for image smoke detection. Multim. Tools Appl. 79, 34587–34603 (2020)

    Article  Google Scholar 

  61. Y. Hu, X. Lu, Real-time video fire smoke detection by utilizing spatial-temporal ConvNet features. Multim. Tools Appl. 77, 29283–29301 (2018)

    Article  Google Scholar 

  62. M. Yin, C. Lang, Z. Li et al., Recurrent convolutional network for video-based smoke detection. Multim. Tools Appl. 78, 237–256 (2019)

    Article  Google Scholar 

  63. A. Filonenko, L. Kurnianggoro, K.-H. Jo, Comparative study of modern convolutional neural networks for smoke detection on image data, in 2017 10th International Conference on Human System Interactions (HSI). IEEE (2017), pp. 64–68

    Google Scholar 

  64. D. Shen, X. Chen, M. Nguyen, W.Q. Yan, Flame detection using deep learning, in 2018 4th International Conference on Control, Automation and Robotics (ICCAR). IEEE (2018), pp. 416–420

    Google Scholar 

  65. Z. Xu, W. Wanguo, L. Xinrui et al., Flame and smoke detection in substation based on wavelet analysis and convolution neural network, in Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence (2019), pp. 248–252

    Google Scholar 

  66. Z. Zhong, M. Wang, Y. Shi, W. Gao, A convolutional neural network-based flame detection method in video sequence. SIViP 12, 1619–1627 (2018)

    Article  Google Scholar 

  67. A. Filonenko, L. Kurnianggoro, K.H. Jo, Smoke detection on video sequences using convolutional and recurrent neural networks, in International Conference on Computational Collective Intelligence (Springer, 2017), pp. 558–566

    Google Scholar 

  68. H. Zhao, J. Shi, X. Qi et al., Pyramid scene parsing network, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2881–2890

    Google Scholar 

  69. L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation (2017). arXiv preprint arXiv:170605587

    Google Scholar 

  70. P. Hu, F. Caba, O. Wang et al., Temporally distributed networks for fast video semantic segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 8818–8827

    Google Scholar 

  71. W. Krüll, R. Tobera, I. Willms et al., Early forest fire detection and verification using optical smoke, gas and microwave sensors. Procedia Eng. 45, 584–594 (2012)

    Article  Google Scholar 

  72. R. Gade, T.B. Moeslund, Thermal cameras and applications: a survey. Mach. Vis. Appl. 25, 245–262 (2014)

    Article  Google Scholar 

  73. K. Ribeiro-Gomes, D. Hernلndez-Lَpez, J.F. Ortega et al., Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture. Sensors 17, 2173 (2017)

    Article  Google Scholar 

  74. W.H. Maes, A.R. Huete, K. Steppe, Optimizing the processing of UAV-based thermal imagery. Remote Sens. 9, 476 (2017)

    Article  Google Scholar 

  75. L. Deng, Q. Chen, Y. He et al., Fire detection with infrared images using cascaded neural network. J. Algorithms Comput. Technol. 13, 1748302619895433 (2019)

    Article  Google Scholar 

  76. L. YunChang, Y. ChunYu, Z. YongMing, Nighttime video smoke detection based on active infrared video image, in 2010 International Conference on Electrical and Control Engineering. IEEE (2010), pp. 1359–1362

    Google Scholar 

  77. B.U. Tِreyin, Fire detection algorithms using multimodal signal and image analysis (2009)

    Google Scholar 

  78. O. Günay, K. Taşdemir, B.U. Töreyin, A.E. Çetin, Video based wildfire detection at night. Fire Saf. J. 44, 860–868 (2009)

    Article  Google Scholar 

  79. S. Verstockt, R. Dekeerschieter, A. Vanoosthuyse, et al., Video fire detection using non-visible light, in Proceedings of the 6th International Seminar on Fire and Explosion Hazards (2010)

    Google Scholar 

  80. S. Verstockt, A. Vanoosthuyse, S. Van Hoecke, et al., Multi-sensor fire detection by fusing visual and non-visual flame features, in International Conference on Image and Signal Processing. Springer (2010), pp. 333–341

    Google Scholar 

  81. I. Bosch, S. Gomez, L. Vergara, J. Moragues, Infrared image processing and its application to forest fire surveillance, in 2007 IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE (2007), pp. 283–288

    Google Scholar 

  82. I. Bosch, S. Gomez, R. Molina, R. Miralles, Object discrimination by infrared image processing, in International Work-Conference on the Interplay Between Natural and Artificial Computation. Springer (2009), pp. 30–40

    Google Scholar 

  83. S. Verstockt, N. Tilley, B. Merci et al., Future directions for video fire detection. in 10th International Symposium on Fire Safety Science. International Association for Fire Safety Science (IAFSS) (2011), pp. 529–542

    Google Scholar 

  84. J.R. Martيnez-de Dios, L. Merino, F. Caballero, A. Ollero, Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors 11, 6328–6353 (2011)

    Article  Google Scholar 

  85. R. Zhang, J. Bin, Z. Liu, E. Blasch, WGGAN: a wavelet-guided generative adversarial network for thermal image translation, in Generative Adversarial Networks for Image-to-Image Translation (Elsevier, 2021), pp. 313–327

    Google Scholar 

  86. Y. Li, Y. Ko, Development of a hybrid algorithm to predict room fire flashovers based on vision data, NRC Report A1-020368.1. 53 (2021)

    Google Scholar 

  87. Y.H. Habiboğlu, O. Günay, A.E. Çetin, Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23, 1103–1113 (2012)

    Article  Google Scholar 

  88. L. Zhang, M. Wang, Y. Fu, Y. Ding, A forest fire recognition method using UAV images based on transfer learning. Forests 13, 975 (2022)

    Article  Google Scholar 

  89. J.C. Myburgh, C. Mouton, M.H. Davel, Tracking translation invariance in CNNs, in Southern African Conference for Artificial Intelligence Research (Springer, 2021), pp. 282–295

    Google Scholar 

  90. C. Mouton, J.C. Myburgh, M.H. Davel, Stride and translation invariance in CNNs, in Southern African Conference for Artificial Intelligence Research (Springer, 2021, pp. 267–281

    Google Scholar 

  91. L. Taylor, G. Nitschke, Improving deep learning with generic data augmentation, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2018), pp. 1542–1547

    Google Scholar 

  92. M.H. Mozaffari, W.-S. Lee, Encoder-decoder CNN models for automatic tracking of tongue contours in real-time ultrasound data. Methods 179, 26–36 (2020)

    Article  Google Scholar 

  93. D. Justus, J. Brennan, S. Bonner, A.S. McGough, Predicting the computational cost of deep learning models, in 2018 IEEE International Conference on Big Data (Big Data). IEEE (2018), pp. 3873–3882

    Google Scholar 

  94. N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The computational limits of deep learning (2020). arXiv preprint arXiv:200705558

    Google Scholar 

  95. V. Monga, Y. Li, Y.C. Eldar, Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38, 18–44 (2021)

    Article  Google Scholar 

  96. M. Hamed Mozaffari, W.-S. Lee, Domain adaptation for ultrasound tongue contour extraction using transfer learning: a deep learning approach. J. Acoustical Soc. Am. 146, EL431–EL437 (2019)

    Google Scholar 

  97. M.H. Mozaffari, W.-S. Lee, Semantic segmentation with peripheral vision, in International Symposium on Visual Computing (2020), pp. 421–429

    Google Scholar 

  98. A.G. Howard, M. Zhu, B. Chen et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:170404861

    Google Scholar 

  99. A. Saiyeda, M.A. Mir, Cloud computing for deep learning analytics: a survey of current trends and challenges. Int. J. Adv. Res. Comput. Sci. 8 (2017)

    Google Scholar 

  100. H. Dong, A. Supratak, L. Mai et al., Tensorlayer: a versatile library for efficient deep learning development, in Proceedings of the 25th ACM International Conference on Multimedia (2017), pp. 1201–1204

    Google Scholar 

  101. A. Akbari, M. Awais, M. Bashar, J. Kittler, How does loss function affect generalization performance of deep learning? Application to human age estimation, in International Conference on Machine Learning. PMLR (2021), pp. 141–151

    Google Scholar 

  102. Q. Wang, Y. Ma, K. Zhao, Y. Tian, A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 187–212 (2022)

    Article  Google Scholar 

  103. M.H. Mozaffari, L.-L. Tay, Convolutional neural networks for Raman spectral analysis of chemical mixtures. in 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI). IEEE (2021), pp. 1–6

    Google Scholar 

  104. H. Harkat, J. Nascimento, A. Bernardino, Fire segmentation using a DeepLabv3+ architecture. in Image and signal processing for remote sensing XXVI. SPIE (2020), pp. 134–145

    Google Scholar 

  105. P. Barmpoutis, K. Dimitropoulos, K. Kaza, N. Grammalidis, Fire detection from images using faster R-CNN and multidimensional texture analysis, in ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019), pp. 8301–8305

    Google Scholar 

  106. M.H. Mozaffari, Y. Li, Y. Ko, Real-time detection and forecast of flashovers by the visual room fire features using deep convolutional neural networks. J. Build. Eng. 64, 105674 (2023)

    Article  Google Scholar 

  107. A. Mikołajczyk, M. Grochowski, Data augmentation for improving deep learning in image classification problem, in 2018 international interdisciplinary PhD workshop (IIPhDW). IEEE (2018), pp 117–122

    Google Scholar 

  108. S. Geetha, C.S. Abhishek, C.S. Akshayanat, Machine vision based fire detection techniques: a survey. Fire Technol. 57, 591–623 (2021)

    Article  Google Scholar 

  109. G. Xu, Y. Zhang, Q. Zhang et al., Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Saf. J. 93, 53–59 (2017)

    Article  Google Scholar 

  110. G. Xu, Q. Zhang, D. Liu et al., Adversarial adaptation from synthesis to reality in fast detector for smoke detection. IEEE Access 7, 29471–29483 (2019)

    Article  Google Scholar 

  111. (2007) Rapid fire phenomena. fire tactics magazine

    Google Scholar 

  112. J. Wu, Y. Zhang, X. Gou et al., Experimental research on gas fire backdraft phenomenon. Procedia Environ. Sci. 11, 1542–1549 (2011)

    Article  Google Scholar 

  113. A.C. Fernandez-Pello, On fire ignition. Fire Saf. Sci. 10, 25–42 (2011)

    Article  Google Scholar 

  114. N. Chen, Smoke explosion in severally ventilation limited compartment fires (2012)

    Google Scholar 

  115. W.P. Behnke, Predicting flash fire protection of clothing from laboratory tests using second-degree burn to rate performance. Fire Mater. 8, 57–63 (1984)

    Article  Google Scholar 

  116. D. Mackay, T. Barber, E. Leonardi, CFD model of a specific fire scenario (2007)

    Google Scholar 

  117. V. Babrauskas, Estimating room flashover potential. Fire Technol. 16, 94–103 (1980)

    Article  Google Scholar 

  118. R.D. Peacock, P.A. Reneke, R.W. Bukowski, V. Babrauskas, Defining flashover for fire hazard calculations. Fire Saf. J. 32, 331–345 (1999). https://doi.org/10.1016/S0379-7112(03)00027-4

    Article  Google Scholar 

  119. G.E. Gorbett, R. Hopkins, P. Kennedy (2007) The current knowledge and training regarding backdraft, flashover, and other rapid fire progression phenomena, in Annual Meeting of the National Fire Protection Association, Boston, MA

    Google Scholar 

  120. W.C. Tam, E.Y. Fu, R. Peacock et al., Generating synthetic sensor data to facilitate machine learning paradigm for prediction of building fire hazard. Fire Technol. (2020). https://doi.org/10.1007/s10694-020-01022-9

    Article  Google Scholar 

  121. W.C. Tam, E.Y. Fu, P. Reneke et al., A generic flashover prediction model for residential buildings using graph neural network, in Proceedings of the 12th Asia-Oceania Symposium on Fire Science and Technology. AOSFST December (2021), pp. 7–9

    Google Scholar 

  122. E.W.M. Lee, R.K.K. Yuen, S.M. Lo et al., A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire. Fire Saf. J. 39, 67–87 (2004). https://doi.org/10.1016/S0379-7112(03)00092-4

    Article  Google Scholar 

  123. E.W.M. Lee, Y.Y. Lee, C.P. Lim, C.Y. Tang, Application of a noisy data classification technique to determine the occurrence of flashover in compartment fires. Adv. Eng. Inform. 20, 213–222 (2006)

    Article  Google Scholar 

  124. E.W.M. Lee, R.K.K. Yuen, S.M. Lo, K.C. Lam, Probabilistic inference with maximum entropy for prediction of flashover in single compartment fire. Adv. Eng. Inform. 16, 179–191 (2002)

    Article  Google Scholar 

  125. A. Dexters, R.R. Leisted, R. Van Coile et al., Testing for knowledge: application of machine learning techniques for prediction of flashover in a 1/5 scale ISO 13784–1 enclosure. Fire Mater. 45, 708–719 (2021)

    Article  Google Scholar 

  126. R.R. Leisted, M.X. Sّrensen, G. Jomaas, Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure. Fire Saf. J. 93, 114–125 (2017)

    Google Scholar 

  127. A. Dexters, R.R. Leisted, R. Van Coile et al., Testing for knowledge: maximising information obtained from fire tests by using machine learning techniques, in Interflam 2019. Egham, United Kingdom (2019), pp. 515–527

    Google Scholar 

  128. S.A. Yusuf, A.A. Alshdadi, M.O. Alassafi et al., Predicting catastrophic temperature changes based on past events via a CNN-LSTM regression mechanism, in Neural Computing and Applications (2021), pp. 1–16

    Google Scholar 

  129. E.Y. Fu, W.C. Tam, J. Wang et al., Predicting flashover occurrence using surrogate temperature data, in Proceedings of the AAAI Conference on Artificial Intelligence (2021), pp. 14785–14794

    Google Scholar 

  130. J. Francis, A.P. Chen, Observable characteristics of flashover. Fire Saf. J. 51, 42–52 (2012)

    Article  Google Scholar 

  131. A.L. Huyen, K. Yun, S. De Baun et al., Dynamic fire and smoke detection and classification for flashover prediction 1173502, 1 (2021). https://doi.org/10.1117/12.2588175

    Article  Google Scholar 

  132. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:14091556

    Google Scholar 

  133. M.H. Mozaffari, Y. Li, Y. Ko, Detecting flashover in a room fire based on the sequence of thermal infrared images using convolutional neural networks, in Proceedings of the Canadian Conference on Artificial Intelligence (2022). https://doi.org/10.21428/594757db.7c1cd4e1

  134. K. Yun, J. Bustos, T. Lu, Predicting rapid fire growth (flashover) using conditional generative adversarial networks, in IS and T International Symposium on Electronic Imaging Science and Technology 2018 (2018), pp. 2751–2757.https://doi.org/10.2352/ISSN.2470-1173.2018.09.SRV-127

  135. D. Cortés, D. Gil, J. Azorيn et al., A review of modelling and simulation methods for flashover prediction in confined space fires. Appl. Sci. 10, 5609 (2020)

    Article  Google Scholar 

  136. H. Mozaffari, Y. Li, Y. Ko, Real-time assistance to firefighters using convolutional neural networks, in Celebrating the Success of Women in STEM Symposium: Pushing the Frontiers of Research Through Collaboration 2016 (2022)

    Google Scholar 

  137. K. Yun, K. Yu, J. Osborne et al., Improved visible to IR image transformation using synthetic data augmentation with cycle-consistent adversarial networks, in Pattern Recognition and Tracking XXX. SPIE (2019), p. 1099502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, Y., Hamed Mozaffari, M., Li, Y. (2024). Fire and Smoke Image Recognition. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics