Skip to main content

A Novel Pharmacological Strategy with Carbon Monoxide in Kidney and Heart Transplantation

  • Chapter
  • First Online:
Gasotransmitters in Organ Transplantation
  • 41 Accesses

Abstract

Carbon monoxide (CO) was historically regarded solely as a poisonous gas that binds to hemoglobin and reduces oxygen-carrying capacity of blood at high concentrations. However, recent findings show that it is endogenously produced in mammalian cells as a by-product of heme degradation by heme oxygenase, and has received a significant attention as a medical gas that influences a myriad of physiological and pathological processes. At low physiological concentrations, CO exhibits several therapeutic properties including antioxidant, anti-inflammatory, anti-apoptotic, anti-fibrotic, anti-thrombotic, anti-proliferative and vasodilatory properties, making it a candidate molecule that could protect organs in various pathological conditions including cold ischemia-reperfusion injury (IRI) in kidney and heart transplantation. Cold IRI is a well-recognized and complicated cascade of interconnected pathological pathways that poses a significant barrier to successful outcomes after kidney and heart transplantation. A substantial body of preclinical evidence demonstrates that CO gas and CO-releasing molecules (CO-RMs) prevent cold IRI in renal and cardiac grafts through several molecular and cellular mechanisms. This chapter discusses recent advances in research involving the use of CO as a novel pharmacological strategy to attenuate cold IRI in preclinical models of kidney and heart transplantation through its administration to the organ donor prior to organ procurement or delivery into organ preservation solution during cold storage and to the organ recipient during reperfusion and after transplantation. The chapter also discusses the underlying molecular mechanisms of cyto- and organ protection by CO during transplantation, and suggest its clinical use in the near future to improve long-term transplantation outcomes.

This chapter is a modified version by the same author in the publication titled Application of carbon monoxide in kidney and heart transplantation: A novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts. Pharmacol Res. 2021; 173:105883.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Henn SA, Bell JL, Sussell AL, Konda S. Occupational carbon monoxide fatalities in the US from unintentional non-fire related exposures, 1992-2008. Am J Ind Med. 2013;56(11):1280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horner J. Carbon monoxide: the invisible killer. J R Soc Promot Heal. 1998;118(3):141–5.

    Article  CAS  Google Scholar 

  3. Ryter SW, Morse D, Choi AMK. Carbon monoxide: to boldly go where NO has gone before. Sci STKE. 2004;2004(230):1–11.

    Article  Google Scholar 

  4. Piantadosi CA. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med. 2008;45(5):562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang R, Wang Z, Wu L. Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol. 1997;121(5):927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kutty RK, Maines MD. Selective induction of heme oxygenase-1 isozyme in rat testis by human chorionic gonadotropin. Arch Biochem Biophys. 1989;268(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  7. Janík M, Ublová M, Kučerová Š, Hejna P. Carbon monoxide-related fatalities: a 60-year single institution experience. J Forensic Legal Med. 2017;48:23–9.

    Article  Google Scholar 

  8. Reumuth G, Alharbi Z, Houschyar KS, Kim BS, Siemers F, Fuchs PC, Grieb G. Carbon monoxide intoxication: what we know. Burns. 2019;45(3):526–30.

    Article  PubMed  Google Scholar 

  9. Eichhorn L, Thudium M, Jüttner B. The diagnosis and treatment of carbon monoxide poisoning. Dtsch Arztebl Int. 2018;115(51–52):863–70.

    PubMed  PubMed Central  Google Scholar 

  10. Sönmez BM, İşcanlı MD, Parlak S, Doğan Y, Ulubay HG, Temel E. Delayed neurologic sequelae of carbon monoxide intoxication. Turk J Emerg Med. 2018;18(4):167–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stucki D, Krahl H, Walter M, Steinhausen J, Hommel K, Brenneisen P, Stahl W. Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems—a comparative in vitro study. Arch Biochem Biophys. 2020;687:108383.

    Article  CAS  PubMed  Google Scholar 

  12. Leemann T, Bonnabry P, Dayer P. Selective inhibition of major drug metabolizing cytochrome P450 isozymes in human liver microsomes by carbon monoxide. Life Sci. 1994;54:951–6.

    Article  CAS  PubMed  Google Scholar 

  13. Petersen LC. The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta. 1977;460:299–307.

    Article  CAS  PubMed  Google Scholar 

  14. Pankow D, Ponsold W. Effect of carbon monoxide exposure on heart cytochrome c oxidase activity of rats. Biomed Biochim Acta. 1984;43:1185–9.

    CAS  PubMed  Google Scholar 

  15. Zuckerbraun BS, Chin BY, Bilban M, D’avila JC, Rao J, Billiar TR, Otterbein LE. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 2007;21:1099–106.

    Article  CAS  PubMed  Google Scholar 

  16. Cavaliere F, Volpe C, Gargaruti R, Poscia A, Di Donato M, Grieco G, Moscato U. Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers. BMC Pulm Med. 2009;9:51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ramos KS, Lin H, McGrath JJ. Modulation of cyclic guanosine monophosphate levels in cultured aortic smooth muscle cells by carbon monoxide. Biochem Pharmacol. 1989;38:1368–70.

    Article  CAS  PubMed  Google Scholar 

  18. Utz J, Ullrich V. Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol. 1991;41:1195–201.

    Article  CAS  PubMed  Google Scholar 

  19. Chin BY, Jiang G, Wegiel B, Wang HJ, Macdonald T, Zhang XC, Gallo D, Cszimadia E, Bach FH, Lee PJ, Otterbein LE. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci U S A. 2007;104(12):5109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J, Ikeda A, Tomiyama K, Harada T, Takahashi T, Yang R, Fink MP, Morita K, Choi AM, Murase N. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant. 2006;6(10):2243–55.

    Article  CAS  PubMed  Google Scholar 

  21. Otterbein LE, Bach FH, Alam J, Soares M, Tao LH, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6(4):422–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao S, Lin Q, Li H, He Y, Fang X, Chen F, Chen C, Huang Z. Carbon monoxide releasing molecule-2 attenuated ischemia/reperfusion-induced apoptosis in cardiomyocytes via a mitochondrial pathway. Mol Med Rep. 2014;9(2):754–62.

    Article  CAS  PubMed  Google Scholar 

  23. Abe T, Yazawa K, Fujino M, Imamura R, Hatayama N, Kakuta Y, Tsutahara K, Okumi M, Ichimaru N, Kaimori JY, Isaka Y, Seki K, Takahara S, Li XK, Nonomura N. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation. Lab Investig. 2017;97(4):468–77.

    Article  CAS  PubMed  Google Scholar 

  24. Pae HO, Oh GS, Choi BM, Chae SC, Kim YM, Chung KR, Chung HT. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol. 2004;172(8):4744–51.

    Article  CAS  PubMed  Google Scholar 

  25. Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7:598–604.

    Article  CAS  PubMed  Google Scholar 

  26. Lin CC, Yang CC, Hsiao LD, Chen SY, Yang CM. Heme oxygenase-1 induction by carbon monoxide releasing molecule-3 suppresses interleukin-1beta-mediated neuroinflammation. Front Mol Neurosci. 2017;10:387.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dreyer-Andersen N, Almeida AS, Jensen P, Kamand M, Okarmus J, Rosenberg T, Friis SD, Martínez Serrano A, Blaabjerg M, Kristensen BW, Skrydstrup T, Gramsbergen JB, Vieira HLA, Meyer M. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS One. 2018;13(1):e0191207.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maines MD, Trakshel GM. Purification and characterization of human biliverdin reductase. Arch Biochem Biophys. 1993;300(1):320–6.

    Article  CAS  PubMed  Google Scholar 

  29. Tenhunen R, Marver HS, Schmid R, Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969;244(23):6388–94.

    Article  CAS  PubMed  Google Scholar 

  30. McCoubrey WK Jr, Ewing JF, Maines MD. Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch Biochem Biophys. 1992;295(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  31. McCoubrey WK Jr, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997;247(2):725–32.

    Article  CAS  PubMed  Google Scholar 

  32. Li MH, Jang JH, Na HK, Cha YN, Surh YJ. Carbon monoxide produced by heme oxygenase-1 in response to nitrosative stress induces expression of glutamate-cysteine ligase in PC12 cells via activation of phosphatidylinositol 3-kinase and Nrf2 signaling. J Biol Chem. 2007;282(39):28577–86.

    Article  CAS  PubMed  Google Scholar 

  33. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103(1):129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shan H, Li T, Zhang L, Yang R, Li Y, Zhang M, Dong Y, Zhou Y, Xu C, Yang B, Liang H, Gao X, Shan H. Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. EBioMedicine. 2019;39:59–68.

    Article  PubMed  Google Scholar 

  35. Fernández-Fierro A, Funes SC, Rios M, Covián C, González J, Kalergis AM. Immune modulation by inhibitors of the HO system. Int J Mol Sci. 2020;22(1):294.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hayashi S, Omta Y, Sakamoto H, et al. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 2004;336(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  37. Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs. 2005;14(11):1305–18.

    Article  CAS  PubMed  Google Scholar 

  38. McKendrick JG, Snodgrass W. On the physiological action of carbon monoxide of nickel. Br Med J. 1891;1(1588):1215–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res. 2002;90(2):E17–24.

    Article  CAS  PubMed  Google Scholar 

  40. Varadi J, Lekli I, Juhasz B, Bacskay I, Szabo G, Gesztelyi R, Szendrei L, Varga E, Bak I, Foresti R, Motterlini R, Tosaki A. Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery. Life Sci. 2007;80(17):1619–26.

    Article  CAS  PubMed  Google Scholar 

  41. Alcaraz MJ, Guillen MI, Ferrandiz ML, Megías J, Motterlini R. Carbon monoxide-releasing molecules: a pharmacological expedient to counteract inflammation. Curr Pharm Des. 2008;14(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  42. Fairlamb IJ, Duhme-Klair AK, Lynam JM, Moulton BE, O'Brien CT, Sawle P, Hammad J, Motterlini R. Eta4-pyrone iron(0)carbonyl complexes as effective CO-releasing molecules (CO-RMs). Bioorg Med Chem Lett. 2006;16(4):995–8.

    Article  CAS  PubMed  Google Scholar 

  43. Aucott BJ, Ward JS, Andrew SG, Milani J, Whitwood AC, Lynam JM, Parkin P, Fairlamb IJS. Redox-tagged carbon monoxide-releasing molecules (CORMs): ferrocene-containing [Mn(C^N)(CO) 4] complexes as a promising new CORM class. Inorg Chem. 2017;56(9):5431–40.

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Chen X, Song L, Zhou R, Luan S. An enzyme-responsive and photoactivatable carbon-monoxide releasing molecule for bacterial infection theranostics. J Mater Chem B. 2020;8(40):9325–34.

    Article  CAS  PubMed  Google Scholar 

  45. Lazarus LS, Benninghoff AD, Berreau LM. Development of Triggerable, trackable, and targetable carbon monoxide releasing molecules. Acc Chem Res. 2020;53(10):2273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McMahon S, Rajagopal A, Amirjalayer S, Halpin Y, Fitzgerald-Hughes D, Buma WJ, Woutersen S, Long C, Pryce MT. Photo-activated CO-release in the amino tungsten Fischer carbene complex, [(CO)(5)WC(NC(4)H(8))me], picosecond time resolved infrared spectroscopy, time-dependent density functional theory, and an antimicrobial study. J Inorg Biochem. 2020;208:111071.

    Article  CAS  PubMed  Google Scholar 

  47. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93(2):e2–8.

    Article  CAS  PubMed  Google Scholar 

  48. Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Scapens D, Motterlini R. [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 2011;40(16):4230–5.

    Article  CAS  PubMed  Google Scholar 

  49. Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Randé JL, Mann BE, Motterlini R, Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol. 2016;102:64–77.

    Article  CAS  PubMed  Google Scholar 

  50. Palao E, Slanina T, Muchova L, Solomek T, Vitek L, Klan P. Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. J Am Chem Soc. 2016;138(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  51. Pan Z, Chittavong V, Li W, Zhang J, Ji K, Zhu M, Ji X, Wang B. Organic CO prodrugs: structure-CO-release rate relationship studies. Chemistry. 2017;23(41):9838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vera T, Henegar JR, Drummond HA, Rimoldi JM, Stec DE. Protective effect of carbon monoxide-releasing compounds in ischemia-induced acute renal failure. J Am Soc Nephrol. 2005;16(4):950–8.

    Article  CAS  PubMed  Google Scholar 

  53. Soni H, Patel P, Rath AC, Jain M, Mehta AA. Cardioprotective effect with carbon monoxide releasing molecule-2 (CORM-2) in isolated perfused rat heart: role of coronary endothelium and underlying mechanism. Vasc Pharmacol. 2010;53(1–2):68–76.

    Article  CAS  Google Scholar 

  54. Hu QS, Chen YX, Huang QS, Deng BQ, Xie SL, Wang JF, Nie RQ. Carbon monoxide releasing molecule accelerates reendothelialization after carotid artery balloon injury in rat. Biomed Environ Sci. 2015;28(4):253–62.

    CAS  PubMed  Google Scholar 

  55. Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol. 2019;862:172636.

    Article  CAS  PubMed  Google Scholar 

  56. Kim DK, Shin SJ, Lee J, Park SY, Kim YT, Choi HY, Yoon YE, Moon HS. Carbon monoxide-releasing molecule-3: amelioration of renal ischemia reperfusion injury in a rat model. Investig Clin Urol. 2020;61(4):441–51.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ji X, Wang B. Strategies toward organic carbon monoxide prodrugs. Acc Chem Res. 2018;51(6):1377–85.

    Article  CAS  PubMed  Google Scholar 

  58. De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, Wang S, Ji X, Cachuela A, Yang H, Gallo D, Tan C, Otterbein L, de Caestecker M, Wang B. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci. 2021;12(31):10649–54.

    Article  PubMed  Google Scholar 

  59. Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: an emerging therapy for acute kidney injury. Med Res Rev. 2020;40(4):1147–77.

    Article  CAS  PubMed  Google Scholar 

  60. Kueh JTB, Stanley NJ, Hewitt RJ, Woods LM, Larsen L, Harrison JC, Rennison D, Brimble MA, Sammut IA, Larsen DS. Norborn-2-en-7-ones as physiologically-triggered carbon monoxide-releasing prodrugs. Chem Sci. 2017;8(8):5454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Y, Shi J, Xia TC, Xu R, He X, Xia Y. Preservation solutions for kidney transplantation: history, advances and mechanisms. Cell Transplant. 2019;28(12):1472–89.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee CM, Carter JT, Alfrey EJ, Ascher NL, Roberts JP, Freise CE. Prolonged cold ischemia time obviates the benefits of 0 HLA mismatches in renal transplantation. Arch Surg. 2000;135:1016–9.

    Article  CAS  PubMed  Google Scholar 

  63. Srinivas TR, Schold JD, Meier-Kriesche H. Outcomes of renal transplantation. In: Comprehensive clinical nephrology. 4th ed; 2010. p. 1222–31.

    Chapter  Google Scholar 

  64. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation. 1997;63:968–74.

    Article  CAS  PubMed  Google Scholar 

  65. Barba J, Zudaire JJ, Robles JE, Tienza A, Rosell D, Berian JM, Pascual I. Is there a safe cold ischemia time interval for the renal graft? Actas Urol Esp. 2011;35:475–80.

    Article  CAS  PubMed  Google Scholar 

  66. Krishnan AR, Wong G, Chapman JR, Coates PT, Russ GR, Pleass H, Russell C, He B, Lim WH. Prolonged ischemic time, delayed graft function, and graft and patient outcomes in live donor kidney transplant recipients. Am J Transplant. 2016;16:2714–23.

    Article  CAS  PubMed  Google Scholar 

  67. Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47.

    Article  PubMed  Google Scholar 

  68. Tapuria N, Kumar Y, Habib MM, et al. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res. 2008;150(2):304–30.

    Article  PubMed  Google Scholar 

  69. Zaouali MA, Ben Abdennebi H, Padrissa-Altes S, et al. Pharmacological strategies against cold ischemia reperfusion injury. Expert Opin Pharmacother. 2010;11(4):537–55.

    Article  CAS  PubMed  Google Scholar 

  70. Boutilier RG. Mechanism of cell survival in hypoxia and hypothermia. J Exp Biol. 2001;204(18):3171–81.

    Article  CAS  PubMed  Google Scholar 

  71. Salahudeen AK. Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am J Physiol Renal Physiol. 2004;287(2):F181–7.

    Article  CAS  PubMed  Google Scholar 

  72. Allen DG, Xiao XH. Activity of the Na+/H+ exchanger contributes to cardiac damage following ischemia and reperfusion. Clin Exp Pharmacol Physiol. 2000;27:727–33.

    Article  CAS  PubMed  Google Scholar 

  73. Salahudeen AK, Huang H, Joshi M, Moore NA, Jenkins JK. Involvement of the mitochondrial pathway in cold storage and rewarming-associated apoptosis in human renal proximal tubular cells. Am J Transplant. 2003;3(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  74. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.

    Article  CAS  PubMed  Google Scholar 

  75. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury. Transplantation. 2003;76(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  76. Rauen U, de Groot H. New insights into cellular and molecular mechanisms of cold storage injury. J Investig Med. 2004;52(5):299–309.

    Article  CAS  PubMed  Google Scholar 

  77. Hébert MJ, Boucher A, Beaucage G, Girard R, Dandavino R. Transplantation of kidneys from a donor with carbon monoxide poisoning. N Engl J Med. 1992;326(23):1571.

    Article  PubMed  Google Scholar 

  78. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287(5):F979–89.

    Article  PubMed  Google Scholar 

  79. Nakao A, Neto JS, Kanno S, Stolz DB, Kimizuka K, Liu F, Bach FH, Billiar TR, Choi AM, Otterbein LE, Murase N. Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant. 2005;5(2):282–91.

    Article  CAS  PubMed  Google Scholar 

  80. Faleo G, Neto JS, Kohmoto J, Tomiyama K, Shimizu H, Takahashi T, Wang Y, Sugimoto R, Choi AM, Stolz DB, Carrieri G, McCurry KR, Murase N, Nakao A. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation. 2008;85(12):1833–40.

    Article  CAS  PubMed  Google Scholar 

  81. Ozaki KS, Yoshida J, Ueki S, Pettigrew GL, Ghonem N, Sico RM, Lee LY, Shapiro R, Lakkis FG, Pacheco-Silva A, Murase N. Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death. Transpl Int. 2012;25(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  82. Hanto DW, Maki T, Yoon MH, Csizmadia E, Chin BY, Gallo D, Konduru B, Kuramitsu K, Smith NR, Berssenbrugge A, Attanasio C, Thomas M, Wegiel B, Otterbein LE. Intraoperative administration of inhaled carbon monoxide reduces delayed graft function in kidney allografts in swine. Am J Transplant. 2010;10(11):2421–30.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshida J, Ozaki KS, Nalesnik MA, Ueki S, Castillo-Rama M, Faleo G, Ezzelarab M, Nakao A, Ekser B, Echeverri GJ, Ross MA, Stolz DB, Murase N. Ex vivo application of carbon monoxide in UW solution prevents transplant-induced renal ischemia/reperfusion injury in pigs. Am J Transplant. 2010;10(4):763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakao A, Faleo G, Shimizu H, Nakahira K, Kohmoto J, Sugimoto R, Choi AM, McCurry KR, Takahashi T, Murase N. Ex vivo carbon monoxide prevents cytochrome P450 degradation and ischemia/reperfusion injury of kidney grafts. Kidney Int. 2008;74(8):1009–16.

    Article  CAS  PubMed  Google Scholar 

  85. Uno Y, Yamazaki H. Expression of cytochrome P450 regulators in cynomolgus macaque. Xenobiotica. 2018;48(7):695–703.

    Article  CAS  PubMed  Google Scholar 

  86. Graves JP, Edin ML, Bradbury JA, Gruzdev A, Cheng J, Lih FB, Masinde TA, Qu W, Clayton NP, Morrison JP, Tomer KB, Zeldin DC. Characterization of four new mouse cytochrome P450 enzymes of the CYP2J subfamily. Drug Metab Dispos. 2013;41(4):763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaver CM, Paul MG, Putz ND, Landstreet SR, Kuck JL, Scarfe L, Skrypnyk N, Yang H, Harrison FE, de Caestecker MP, Bastarache JA, Ware LB. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. Am J Physiol Renal Physiol. 2019;317(4):F922–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sener A, Tran KC, Deng JP, Garcia B, Lan Z, Liu W, Sun T, Arp J, Salna M, Acott P, Cepinskas G, Jevnikar AM, Luke PP. Carbon monoxide releasing molecules inhibit cell death resulting from renal transplantation related stress. J Urol. 2013;190(2):772–8.

    Article  CAS  PubMed  Google Scholar 

  90. Bagul A, Hosgood SA, Kaushik M, Nicholson ML. Carbon monoxide protects against ischemia-reperfusion injury in an experimental model of controlled nonheartbeating donor kidney. Transplantation. 2008;85(4):576–81.

    Article  CAS  PubMed  Google Scholar 

  91. Caumartin Y, Stephen J, Deng JP, Lian D, Lan Z, Liu W, Garcia B, Jevnikar AM, Wang H, Cepinskas G, Luke PP. Carbon monoxide-releasing molecules protect against ischemia-reperfusion injury during kidney transplantation. Kidney Int. 2011;79(10):1080–9.

    Article  CAS  PubMed  Google Scholar 

  92. Bhattacharjee RN, Richard-Mohamed M, Sun Q, Haig A, Aboalsamh G, Barrett P, Mayer R, Alhasan I, Pineda-Solis K, Jiang L, Alharbi H, Saha M, Patterson E, Sener A, Cepinskas G, Jevnikar AM, Luke PPW. CORM-401 reduces ischemia reperfusion injury in an ex vivo renal porcine model of the donation after circulatory death. Transplantation. 2018;102(7):1066–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wolfs TG, Buurman WA, van Schadewijk A, de Vries B, Daemen MA, Hiemstra PS, van’t Veer C. In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: ifn-γ and tnf-α mediated up-regulation during inflammation. J Immunol. 2002;168:1286–93.

    Article  CAS  PubMed  Google Scholar 

  94. Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest. 2005;115:2894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sandouka A, Fuller BJ, Mann BE, Green CJ, Foresti R, Motterlini R. Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney Int. 2006;69(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  97. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2005;19(2):284–6.

    Article  CAS  PubMed  Google Scholar 

  98. Ryan MJ, Jernigan NL, Drummond HA, McLemore GR Jr, Rimoldi JM, Poreddy SR, Gadepalli RSV, Stec DE. Renal vascular reponses to CORM-1A in the mouse. Pharmacol Res. 2006;54(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  99. Martins PN, Reuzel-Selke A, Jurisch A, et al. Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration. Transplant Proc. 2005;37:379–81.

    Article  CAS  PubMed  Google Scholar 

  100. Wagner M, Cadetg P, Ruf R, et al. Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int. 2003;63:1564–73.

    Article  CAS  PubMed  Google Scholar 

  101. Salahudeen AA, Jenkins JK, Huang H, et al. Overexpression of heme oxygenase protects renal tubular cells against cold storage injury: studies using hem in induction and HO-1 gene transfer. Transplantation. 2001;72:1498–504.

    Article  CAS  PubMed  Google Scholar 

  102. Blydt-Hansen TD, Katori M, Lassman C, et al. Gene transfer-induced local heme oxygenase-1 overexpression protects rat kidney transplants from ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14:745–54.

    Article  CAS  PubMed  Google Scholar 

  103. Smith JA, Bergin PJ, Williams TJ, Esmore DS. Successful heart transplantation with cardiac allografts exposed to carbon monoxide poisoning. J Heart Lung Transplant. 1992;11(4 Pt 1):698–700.

    CAS  PubMed  Google Scholar 

  104. Iberer F, Königsrainer A, Wasler A, Petutschnigg B, Auer T, Tscheliessnigg K. Cardiac allograft harvesting after carbon monoxide poisoning. Report of a successful orthotopic heart transplantation. J Heart Lung Transplant. 1993;12(3):499–500.

    CAS  PubMed  Google Scholar 

  105. Roberts JR, Bain M, Klachko MN, Seigel EG, Wason S. Successful heart transplantation from a victim of carbon monoxide poisoning. Ann Emerg Med. 1995;26(5):652–5.

    Article  CAS  PubMed  Google Scholar 

  106. Nakao A, Toyokawa H, Abe M, Kiyomoto T, Nakahira K, Choi AM, Nalesnik MA, Thomson AW, Murase N. Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses. Transplantation. 2006;81(2):220–30.

    Article  PubMed  Google Scholar 

  107. Foresti R, Hammad J, Clark JE, Johnson TR, Mann BE, Friebe A, Green CJ, Motterlini R. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol. 2004;142:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Laurence J, Elhadad S, Robison T, Terry H, Varshney R, Woolington S, Ghafoory S, Choi ME, Ahamed J. HIV protease inhibitor-induced cardiac dysfunction and fibrosis is mediated by platelet-derived TGF-β1 and can be suppressed by exogenous carbon monoxide. PLoS One. 2017;12(10):e0187185.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fujisaki N, Kohama K, Nishimura T, Yamashita H, Ishikawa M, Kanematsu A, Yamada T, Lee S, Yumoto T, Tsukahara K, Kotani J, Nakao A. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats. Med Gas Res. 2016;6(3):122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakao A, Kaczorowski DJ, Wang Y, Cardinal JS, Buchholz BM, Sugimoto R, Tobita K, Lee S, Toyoda Y, Billiar TR, McCurry KR. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J Heart Lung Transplant. 2010;29(5):544–53.

    Article  PubMed  Google Scholar 

  111. Zhang Z, Xiao Z, Guo Y, Zhou P, Zhu P, Mai M, Zheng S. Preservation with high-pressure carbon monoxide better protects ex vivo rabbit heart function than conventional cardioplegic solution preservation. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(7):1008–13.

    CAS  PubMed  Google Scholar 

  112. Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transplant. 2007;26(11):1192–8.

    Article  PubMed  Google Scholar 

  113. Bak I, Papp G, Turoczi T, Varga E, Szendrei L, Vecsernyes M, Joo F, Tosaki A. The role of heme oxygenase-related carbon monoxide and ventricular fibrillation in ischemic/reperfused hearts. Free Radic Biol Med. 2002;33(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  114. Mei D, Du Y, Wang Y. Cardioprotection and mechanisms of exogenous carbon monoxide releaser CORM-2 against ischemia/reperfusion injury in isolated rat hearts. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2007;36(3):291–7.

    CAS  PubMed  Google Scholar 

  115. Gessner G, Sahoo N, Swain SM, Hirth G, Schönherr R, Mede R, Westerhausen M, Brewitz HH, Heimer P, Imhof D, Hoshi T, Heinemann SH. CO-independent modification of K+ channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). Eur J Pharmacol. 2017;815:33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox KL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol. 2018;18:114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nielsen VG. The anticoagulant effect of Apis mellifera phospholipase A2 is inhibited by CORM-2 via a carbon monoxide-independent mechanism. J Thromb Thrombolysis. 2020;49:100–7.

    Article  CAS  PubMed  Google Scholar 

  118. Yuan Z, Yang X, Ye Y, Tripathi R, Wang B. Chemical reactivities of two widely used ruthenium-based co-releasing molecules with a range of biologically important reagents and molecules. Anal Chem. 2021;93(12):5317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang H, Gou W, Strange C, Wang J, Nietert PJ, Cloud C, Owzarski S, Shuford B, Duke T, Luttrell L, Lesher A, Papas KK, Herold KC, Clark P, Usmani-Brown S, Kitzmann J, Crosson C, Adams DB, Morgan KA. Islet harvest in carbon monoxide-saturated medium for chronic pancreatitis patients undergoing islet autotransplantation. Cell Transplant. 2019;28(S1):25S–36S.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang P, Liu H, Zhao Q, Chen Y, Liu B, Zhang B, Zheng Q. Syntheses and evaluation of drug-like properties of CO-releasing molecules containing ruthenium and group 6 metal. Eur J Med Chem. 2014;74:199–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Dugbartey .

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dugbartey, G.J. (2024). A Novel Pharmacological Strategy with Carbon Monoxide in Kidney and Heart Transplantation. In: Gasotransmitters in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-031-48067-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48067-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48066-9

  • Online ISBN: 978-3-031-48067-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics