Skip to main content

Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Abstract

This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.

Nathan, Michael, and Xufeng are the first three authors of this paper, and they contributed equally. Professor Xiaodong Qu is the mentor for this research project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, I., et al.: EEG-based epileptic seizure detection via machine/deep learning approaches: a systematic review. Comput. Intell. Neurosci. 2022, 6486570 (2022)

    Google Scholar 

  2. Altaheri, H., et al.: Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Comput. Appl. 35, 1–42 (2021)

    Google Scholar 

  3. Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), p. 1. IEEE (2021)

    Google Scholar 

  4. Chen, L., et al.: Data-driven detection of subtype-specific differentially expressed genes. Sci. Rep. 11(1), 332 (2021)

    Article  Google Scholar 

  5. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (eeg) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  6. Deb, R., An, S., Bhat, G., Shill, H., Ogras, U.Y.: A systematic survey of research trends in technology usage for Parkinson’s disease. Sensors 22(15), 5491 (2022)

    Article  Google Scholar 

  7. Deb, R., Bhat, G., An, S., Shill, H., Ogras, U.Y.: Trends in technology usage for Parkinson’s disease assessment: a systematic review. MedRxiv (2021). https://doi.org/10.1101/2021.02.01.21250939

  8. Deng, Z., Li, C., Song, R., Liu, X., Qian, R., Chen, X.: EEG-based seizure prediction via hybrid vision transformer and data uncertainty learning. Eng. Appl. Artif. Intell. 123, 106401 (2023)

    Article  Google Scholar 

  9. Dou, G., Zhou, Z., Qu, X.: Time majority voting, a PC-based EEG classifier for non-expert users. In: Kurosu, M., et al. (eds.) HCI International 2022 – Late Breaking Papers. Multimodality in Advanced Interaction Environments. HCII 2022. LNCS, vol. 13519. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17618-0_29

  10. Duan, R.N., Zhu, J.Y., Lu, B.L.: Differential entropy feature for EEG-based emotion classification. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 81–84 (2013). https://doi.org/10.1109/NER.2013.6695876

  11. Gong, S., Xing, K., Cichocki, A., Li, J.: Deep learning in EEG: advance of the last ten-year critical period. IEEE Trans. Cogn. Develop. Syst. 14(2), 348–365 (2021)

    Article  Google Scholar 

  12. Govindan, B., Pickett, S., Riggs, B.: Fear of the cure: a beginner’s guide to overcoming barriers in creating a course-based undergraduate research experience. J. Microbiol. Biol. Educ. 21(2), 50 (2020)

    Article  Google Scholar 

  13. Guo, J.Y., et al.: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels. Phys. A Statist. Mech. Appl. 603, 127700 (2022)

    Article  Google Scholar 

  14. Hassin-Baer, S., et al.: Identification of an early-stage Parkinson’s disease Neuromarker using event-related potentials, brain network analytics and machine-learning. PLoS ONE 17(1), e0261947 (2022)

    Article  Google Scholar 

  15. Hossain, K.M., Islam, M., Hossain, S., Nijholt, A., Ahad, M.A.R., et al.: Status of deep learning for EEG-based brain-computer interface applications. UMBC Student Collection (2023)

    Google Scholar 

  16. Houssein, E.H., Hammad, A., Ali, A.A.: Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review. Neural Comput. Appl. 34(15), 12527–12557 (2022)

    Article  Google Scholar 

  17. Huang, D., Tang, Y., Qin, R.: An evaluation of planetScope images for 3D reconstruction and change detection-experimental validations with case studies. GISci. Remote Sens. 59(1), 744–761 (2022)

    Article  Google Scholar 

  18. Jiang, C., et al.: Deep denoising of raw biomedical knowledge graph from COVID-19 literature, Litcovid, and Pubtator: framework development and validation. J. Med. Internet Res. 24(7), e38584 (2022)

    Article  MathSciNet  Google Scholar 

  19. Kastrati, A., et al.: EEGEyeNet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021). https://openreview.net/forum?id=Nc2uduhU9qa

  20. Katsigiannis, S., Ramzan, N.: Dreamer: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22(1), 98–107 (2018). https://doi.org/10.1109/JBHI.2017.2688239

    Article  Google Scholar 

  21. Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  22. Kostas, D., Aroca-Ouellette, S., Rudzicz, F.: BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. Front. Hum. Neurosci. 15, 653659 (2021)

    Article  Google Scholar 

  23. Li, F., He, F., Wang, F., Zhang, D., Xia, Y., Li, X.: A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning. Appl. Sci. 10(5), 1605 (2020)

    Article  Google Scholar 

  24. Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D.: Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 43(7), 807–816 (2013)

    Article  Google Scholar 

  25. Li, X., et al.: EEG based emotion recognition: a tutorial and review. ACM Comput. Surv. 55(4), 1–57 (2022)

    Article  Google Scholar 

  26. Liu, C., Li, H., Xu, J., Gao, W., Shen, X., Miao, S.: Applying convolutional neural network to predict soil erosion: a case study of coastal areas. Int. J. Environ. Res. Public Health 20(3), 2513 (2023)

    Article  Google Scholar 

  27. Liu, J., Wu, G., Luo, Y., Qiu, S., Yang, S., Li, W., Bi, Y.: EEG-based emotion classification using a deep neural network and sparse autoencoder. PubMed, pp. 1–42 (2020)

    Google Scholar 

  28. Lu, Y., Wang, H., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023)

  29. Lu, Y., et al.: COT: an efficient and accurate method for detecting marker genes among many subtypes. Bioinform. Adv. 2(1), vbac037 (2022)

    Google Scholar 

  30. Luo, X., Ma, X., Munden, M., Wu, Y.J., Jiang, Y.: A multisource data approach for estimating vehicle queue length at metered on-ramps. J. Transp. Eng. Part A: Syst. 148(2), 04021117 (2022)

    Article  Google Scholar 

  31. Luo, Y., et al.: EEG-based emotion classification using spiking neural networks. IEEE Access 8, 46007–46016 (2020)

    Article  Google Scholar 

  32. Ma, X.: Traffic performance evaluation using statistical and machine learning methods, Ph. D. thesis, The University of Arizona (2022)

    Google Scholar 

  33. Ma, X., Karimpour, A., Wu, Y.J.: Statistical evaluation of data requirement for ramp metering performance assessment. Transp. Res. Part A: Policy Pract. 141, 248–261 (2020)

    Google Scholar 

  34. Padfield, N., Zabalza, J., Zhao, H., Masero, V., Ren, J.: EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors 19(6), 1423 (2019)

    Article  Google Scholar 

  35. Peng, X., Bhattacharya, T., Mao, J., Cao, T., Jiang, C., Qin, X.: Energy-efficient management of data centers using a renewable-aware scheduler. In: 2022 IEEE International Conference on Networking, Architecture and Storage (NAS), pp. 1–8. IEEE (2022)

    Google Scholar 

  36. Prasanna, J., Subathra, M., Mohammed, M.A., Damaševičius, R., Sairamya, N.J., George, S.T.: Automated epileptic seizure detection in pediatric subjects of CHB-MIT EEG database-a survey. J. Personal. Med. 11(10), 1028 (2021)

    Article  Google Scholar 

  37. Qu, X., Hickey, T.J.: EEG4Home: a human-in-the-loop machine learning model for EEG-based BCI. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition. HCII 2022. LNCS, vol. 13310. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05457-0_14

  38. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

    Chapter  Google Scholar 

  39. Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T.J., Hall, M.H.: Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns. Front. Psych. 11, 541659 (2020)

    Article  Google Scholar 

  40. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

    Chapter  Google Scholar 

  41. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)

    Google Scholar 

  42. Qureshi, M.B., Afzaal, M., Qureshi, M.S., Fayaz, M.: Machine learning-based EEG signals classification model for epileptic seizure detection. Multimedia Tools Appl. 80, 17849–17877 (2021)

    Article  Google Scholar 

  43. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  44. Saeidi, M., et al.: Neural decoding of EEG signals with machine learning: a systematic review. Brain Sci. 11(11), 1525 (2021)

    Article  MathSciNet  Google Scholar 

  45. Sha’abani, M.N.A.H., Fuad, N., Jamal, N., Ismail, M.F.: kNN and SVM classification for EEG: a review. In: Kasruddin Nasir, A.N., et al. (eds.) InECCE2019. LNEE, vol. 632, pp. 555–565. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2317-5_47

    Chapter  Google Scholar 

  46. Shen, X., Sun, Y., Zhang, Y., Najmabadi, M.: Semi-supervised intent discovery with contrastive learning. In: Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI, pp. 120–129 (2021)

    Google Scholar 

  47. Siddhad, G., Gupta, A., Dogra, D.P., Roy, P.P.: Efficacy of transformer networks for classification of raw EEG data. arXiv preprint arXiv:2202.05170 (2022)

  48. Singh, A., Hussain, A.A., Lal, S., Guesgen, H.W.: A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors 21(6), 2173 (2021)

    Article  Google Scholar 

  49. Song, Y., Jia, X., Yang, L., Xie, L.: Transformer-based spatial-temporal feature learning for EEG decoding. arXiv preprint arXiv:2106.11170 (2021)

  50. Suhaimi, N.S., Mountstephens, J., Teo, J., et al.: EEG-based emotion recognition: a state-of-the-art review of current trends and opportunities. Comput. Intell. Neurosci. 2020, 8875426 (2020)

    Google Scholar 

  51. Sun, J., Xie, J., Zhou, H.: EEG classification with transformer-based models. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), pp. 92–93. IEEE (2021)

    Google Scholar 

  52. Tang, Y., Song, S., Gui, S., Chao, W., Cheng, C., Qin, R.: Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 23(3), 1437 (2023)

    Article  Google Scholar 

  53. Tangermann, M., et al.: Review of the BCI competition IV. Frontiers Neurosci. 6, 55 (2012)

    Google Scholar 

  54. Wang, J., Wang, M.: Review of the emotional feature extraction and classification using EEG signals. Cogn. Robot. 1, 29–40 (2021)

    Article  Google Scholar 

  55. Wang, R., Qu, X.: EEG Daydreaming, a machine learning approach to detect daydreaming activities. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition. HCII 2022. LNCS, vol. 13310. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05457-0_17

  56. Yi, L., Qu, X.: Attention-based CNN capturing EEG recording’s average voltage and local change. In: Degen, H., Ntoa, S. (eds.) Artificial Intelligence in HCI. HCII 2022. LNCS, vol. 13336. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05643-7_29

  57. Zhang, S., Zhao, Z., Guan, C.: Multimodal continuous emotion recognition: a technical report for ABAW5. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5763–5768 (2023)

    Google Scholar 

  58. Zhang, Y., et al.: Biotic homogenization increases with human intervention: implications for mangrove wetland restoration. Ecography 2022(4), 5835 (2022)

    Google Scholar 

  59. Zhang, Z., et al.: Implementation and performance evaluation of in-vehicle highway back-of-queue alerting system using the driving simulator. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1753–1759. IEEE (2021)

    Google Scholar 

  60. Zhang, Z., Tian, R., Sherony, R., Domeyer, J., Ding, Z.: Attention-based interrelation modeling for explainable automated driving. IEEE Trans. Intell. Vehicles 8, 1564–1573 (2022)

    Google Scholar 

  61. Zhao, Z., Chopra, K., Zeng, Z., Li, X.: Sea-Net: squeeze-and-excitation attention net for diabetic retinopathy grading. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2496–2500. IEEE (2020)

    Google Scholar 

  62. Zhao, Z., et al.: BiRA-Net: bilinear attention net for diabetic retinopathy grading. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1385–1389. IEEE (2019)

    Google Scholar 

  63. Zhou, Z., Dou, G., Qu, X.: BrainActivity1: a framework of EEG data collection and machine learning analysis for college students. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds.) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol. 1654. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19679-9_16

  64. Zong, N., et al.: Beta: a comprehensive benchmark for computational drug-target prediction. Brief. Bioinform. 23(4), bbac199 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Koome Murungi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murungi, N.K., Pham, M.V., Dai, X., Qu, X. (2023). Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers. In: Kurosu, M., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14054. Springer, Cham. https://doi.org/10.1007/978-3-031-48038-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48038-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48037-9

  • Online ISBN: 978-3-031-48038-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics