Skip to main content

Hybrid Region and Pixel-Level Adaptive Loss for Mass Segmentation on Whole Mammography Images

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

Breast cancer continues to be one of the most lethal cancer types, mainly affecting women. However, thanks to the utilization of deep learning approaches for breast cancer detection, there has been a considerable boost in the performance in the field. The loss function is a core element of any deep learning architecture with a significant influence on its performance. The loss function is particularly important for tasks such as breast mass segmentation. For this task, challenging properties of input images, such as pixel class imbalance, may result in instability of training or poor detection results due to the bias of the loss function toward correctly segmenting the majority class. Inspired by the success of sample-level loss functions, we propose a hybrid loss function incorporating both pixel-level and region-level losses, where the breast tissue density is used as a sample-level weighting signal. We refer to the proposed loss as Density-based Adaptive Sample-Level Prioritizing (Density-ASP) loss. Our motivation stems from the observation that mass segmentation becomes more challenging as breast density increases. This observation makes density a viable option for controlling the effect of region-level losses. To demonstrate the effectiveness of the proposed Density-ASP, we have conducted mass segmentation experiments using two publicly available datasets: INbreast and CBIS-DDSM. Our experimental results demonstrate that Density-ASP improves segmentation performance over the commonly used hybrid losses across multiple metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  2. Batchu, S., Liu, F., Amireh, A., Waller, J., Umair, M.: A review of applications of machine learning in mammography and future challenges. Oncology 99(8), 483–490 (2021)

    Article  Google Scholar 

  3. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  4. Nyström, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjöld, B., Rutqvist, L.E.: Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 359(9310), 909–919 (2002)

    Article  Google Scholar 

  5. Malof, J.M., Mazurowski, M.A., Tourassi, G.D.: The effect of class imbalance on case selection for case-based classifiers: an empirical study in the context of medical decision support. Neural Netw. 25, 141–145 (2012)

    Article  Google Scholar 

  6. Sun, H., et al.: AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys. Med. Biol. 65(5), 055005 (2020)

    Article  Google Scholar 

  7. Xu, C., Qi, Y., Wang, Y., Lou, M., Pi, J., Ma, Y.: ARF-Net: an adaptive receptive field network for breast mass segmentation in whole mammograms and ultrasound images. Biomed. Signal Process. Control 71, 103178 (2022)

    Article  Google Scholar 

  8. Milletari, F., Nassir, N., Seyed-Ahmad, A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  9. Yi-de, M., Qing, L., Zhi-Bai, Q.: Automated image segmentation using improved PCNN model based on cross-entropy. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 743–746. IEEE (2004)

    Google Scholar 

  10. Liniya, P., Nicolescu, M., Nicolescu, M., Bebis, G.: ASP Loss: adaptive sample-level prioritizing loss for mass segmentation on whole mammography images. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds.) ICANN 2023. LNCS, vol. 14255, pp. 102–114. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44210-0_9

    Chapter  Google Scholar 

  11. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  12. Zhao, S., Wang, Y., Yang, Z., Cai, D.: Region mutual information loss for semantic segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Huang, H., et al.: Unet 3+: a full-scale connected unet for medical image segmentation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  16. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)

    Article  Google Scholar 

  17. Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., Elmaghraby, A.S.: Connected-UNets: a deep learning architecture for breast mass segmentation. NPJ Breast Cancer 7(1), 151 (2021)

    Article  Google Scholar 

  18. Long, J., Evan, S., Trevor, D.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. (2015)

    Google Scholar 

  19. Wu, S., Wang, Z., Liu, C., Zhu, C., Wu, S., Xiao, K.: Automatical segmentation of pelvic organs after hysterectomy by using dilated convolution u-net++. In: 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 362–367. IEEE (2019)

    Google Scholar 

  20. Zhang, J., Jin, Y., Xu, J., Xu, X., Zhang, Y.: Mdu-net: multi-scale densely connected u-net for biomedical image segmentation. arXiv preprint arXiv:1812.00352 (2018)

  21. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  22. Li, C., et al.: Attention unet++: a nested attention-aware u-net for liver CT image segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 345–349. IEEE (2020)

    Google Scholar 

  23. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  24. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  25. Song, T., Meng, F., Rodriguez-Paton, A., Li, P., Zheng, P., Wang, X.: U-next: a novel convolution neural network with an aggregation u-net architecture for gallstone segmentation in CT images. IEEE Access 7, 166823–166832 (2019)

    Article  Google Scholar 

  26. Hai, J., Qiao, K., Chen, J., Tan, H., Xu, J., Zeng, L., Shi, D., Yan, B.: Fully convolutional densenet with multiscale context for automated breast tumor segmentation. Journal of healthcare engineering, (2019)

    Google Scholar 

  27. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  28. Li, S., Dong, M., Du, G., Mu, X.: Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7, 59037–59047 (2019)

    Article  Google Scholar 

  29. Chen, J., Chen, L., Wang, S., Chen, P.: A novel multi-scale adversarial networks for precise segmentation of x-ray breast mass. IEEE Access 8, 103772–103781 (2020)

    Article  Google Scholar 

  30. Rajalakshmi, N.R., Vidhyapriya, R., Elango, N., Ramesh, N.: Deeply supervised u-net for mass segmentation in digital mammograms. Int. J. Imaging Syst. Technol. 31(1), 59–71 (2021)

    Article  Google Scholar 

  31. Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a monte carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615 (2007)

    Article  Google Scholar 

  32. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403, (2015)

    Google Scholar 

  33. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)

    Article  Google Scholar 

  34. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  35. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  36. Zhao, S., Boxi, W., Wenqing, C., Yao, H., Deng, Cai.: Correlation maximized structural similarity loss for semantic segmentation. arXiv preprint arXiv:1910.08711 (2019)

  37. Aliniya, P., Razzaghi, P.: Parametric and nonparametric context models: a unified approach to scene parsing. Pattern Recogn. 84, 165–181 (2018)

    Article  Google Scholar 

  38. Alinia, P., Parvin, R.: Similarity based context for nonparametric scene parsing. In: 2017 Iranian Conference on Electrical Engineering (ICEE), pp. 1509–1514. IEEE (2017)

    Google Scholar 

  39. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. In: Computerized Medical Imaging and Graphics, vol. 75, pp. 24–33 (2019)

    Google Scholar 

  40. Simon, P., Uma, V.: Review of texture descriptors for texture classification. In: Satapathy, S.C., Bhateja, V., Raju, K.S., Janakiramaiah, B. (eds.) Data Engineering and Intelligent Computing. AISC, vol. 542, pp. 159–176. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3223-3_15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Aliniya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliniya, P., Nicolescu, M., Nicolescu, M., Bebis, G. (2023). Hybrid Region and Pixel-Level Adaptive Loss for Mass Segmentation on Whole Mammography Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics