Skip to main content

Generative Adversarial Networks for Data Augmentation

  • Chapter
  • First Online:
Data Driven Approaches on Medical Imaging

Abstract

One way to expand the available dataset for training AI models in the medical field is through the use of Generative Adversarial Networks (GANs) for data augmentation. GANs work by employing a generator network to create new data samples that are then assessed by a discriminator network to determine their similarity to real samples. The discriminator network is taught to differentiate between actual and synthetic samples, while the generator system is trained to generate data that closely resemble real ones. The process is repeated until the generator network can produce synthetic data that is indistinguishable from genuine data. GANs have been utilized in medical image analysis for various tasks, including data augmentation, image creation, and domain adaptation. They can generate synthetic samples that can be used to increase the available dataset, especially in cases where obtaining large amounts of genuine data is difficult or unethical. However, it is essential to note that the use of GANs in medical imaging is still an active area of research to ensure that the produced images are of high quality and suitable for use in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhalim, I.S.A., Mohamed, M.F., Mahdy, Y.B.: Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Expert Syst. Appl. 165, 113922 (2021)

    Article  Google Scholar 

  2. Sun, Y., Yuan, P., Sun, Y.: MM-GAN: 3D MRI data augmentation for medical image segmentation via generative adversarial networks. In: 2020 IEEE International Conference on Knowledge Graph (ICKG), pp. 227–234. IEEE (2020)

    Google Scholar 

  3. Sampath, V., Maurtua, I., Aguilar Martin, J.J., Gutierrez, A.: A survey on generative adversarial networks for imbalance problems in computer vision tasks. J. Big data 8, 1–59 (2021)

    Article  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  6. Lv, J.-J., Shao, X.-H., Huang, J.-S., Zhou, X.-D., Zhou, X.: Data augmentation for face recognition. Neurocomputing 230, 184–196 (2017)

    Article  Google Scholar 

  7. Chen, Y., Yang, X.-H., Wei, Z., Heidari, A.A., Zheng, N., Li, Z., Chen, H., Hu, H., Zhou, Q., Guan, Q.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022)

    Article  Google Scholar 

  8. Hossain, T., Shishir, F.S., Ashraf, M., Al Nasim, M.A., Shah, F.M.: Brain tumor detection using convolutional neural network. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6. IEEE (2019)

    Google Scholar 

  9. Biswas, A., Islam, M.S.: Mri brain tumor classification technique using fuzzy c-means clustering and artificial neural network. In: International Conference on Artificial Intelligence for Smart Community: AISC 2020, 17–18 December, Universiti Teknologi Petronas, Malaysia, pp. 1005–1012. Springer (2022)

    Google Scholar 

  10. Cai, L., Gao, J., Zhao, D.: A review of the application of deep learning in medical image classification and segmentation. Ann. Transl. Med. 8(11), 713 (2020)

    Article  Google Scholar 

  11. Hossain, I., Puppala, S., Talukder, S.: Collaborative differentially private federated learning framework for the prediction of diabetic retinopathy. In: 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), pp. 1–6. IEEE (2023)

    Google Scholar 

  12. Shah, F.M., Hossain, T., Ashraf, M., Shishir, F.S., Al Nasim, M.A., Kabir, M.H.: Brain tumor segmentation techniques on medical images-a review. Int. J. Sci. Eng. Res. 10(2), 1514–1525 (2019)

    Google Scholar 

  13. Talukder, S., Puppala, S., Hossain, I.: Federated learning-based contraband detection within airport baggage x-rays. J. Comput. Sci. Coll. 38(3), 218–218 (2022)

    Google Scholar 

  14. Talukder, S., Puppala, S., Hossain, I.: A novel hierarchical federated learning with self-regulated decentralized clustering. J. Comput. Sci. Coll. 38(3), 222–223 (2022)

    Google Scholar 

  15. Puppala, S., Hossain, I., Talukder, S.: Towards federated learning based contraband detection within airport baggage X-rays. In: 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), pp. 1–6. IEEE (2022)

    Google Scholar 

  16. Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., Mauri, G., Nakayama, H., Hayashi, H.: Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access 7, 156966–156977 (2019). https://doi.org/10.1109/ACCESS.2019.2947606

    Article  Google Scholar 

  17. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

    Google Scholar 

  18. Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D.A., Hernández, M.V., Wardlaw, J., Rueckert, D.: Gan augmentation: augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863 (2018)

    Google Scholar 

  19. Al Nasim, M.A., Al Munem, A., Islam, M., Palash, M.A.H., Haque, M.M.A., Shah, F.M.: Brain tumor segmentation using enhanced u-net model with empirical analysis. In: 2022 25th International Conference on Computer and Information Technology (ICCIT), pp. 1027–1032. IEEE (2022)

    Google Scholar 

  20. Ali, H., Biswas, M.R., Mohsen, F., Shah, U., Alamgir, A., Mousa, O., Shah, Z.: The role of generative adversarial networks in brain mri: a scoping review. Insights Imaging 13(1), 98 (2022)

    Article  Google Scholar 

  21. Sauber-Cole, R., Khoshgoftaar, T.M.: The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey. J. Big Data 9(1), 98 (2022)

    Article  Google Scholar 

  22. Nasim, M., Dhali, A., Afrin, F., Zaman, N.T., Karim, N.: The prominence of artificial intelligence in covid-19. arXiv preprint arXiv:2111.09537 (2021)

    Google Scholar 

  23. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

    Google Scholar 

  24. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  26. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

    Google Scholar 

  27. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  28. Wang, Z., Zhang, Z., Feng, Y., Hendriks, L.E., Miclea, R.L., Gietema, H., Schoenmaekers, J., Dekker, A., Wee, L., Traverso, A.: Generation of synthetic ground glass nodules using generative adversarial networks (gans). Eur. Radiol. Exp. 6(1), 1–12 (2022)

    Article  Google Scholar 

  29. Zhang, H., Hu, X., Ma, D., Wang, R., Xie, X.: Insufficient data generative model for pipeline network leak detection using generative adversarial networks. IEEE Trans. Cybern. 52(7), 7107–7120 (2020)

    Article  Google Scholar 

  30. Saldanha, J., Chakraborty, S., Patil, S., Kotecha, K., Kumar, S., Nayyar, A.: Data augmentation using variational autoencoders for improvement of respiratory disease classification. PLoS One 17(8), 0266467 (2022)

    Article  Google Scholar 

  31. Garay-Maestre, U., Gallego, A.-J., Calvo-Zaragoza, J.: Data augmentation via variational auto-encoders. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19–22, 2018, Proceedings 23, pp. 29–37. Springer (2019)

    Google Scholar 

  32. Hahn, T.V., Mechefske, C.K.: Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder. Int. J. Hydromech. 4(1), 69–98 (2021)

    Article  Google Scholar 

  33. Bui, V., Pham, T.L., Nguyen, H. and Jang, Y.M.: Data augmentation using generative adversarial network for automatic machine fault detection based on vibration signals. Appl. Sci. 11(5), 2166 (2021)

    Article  Google Scholar 

  34. Motamed, S., Rogalla, P., Khalvati, F.: Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Inf. Med. Unlocked 27, 100779 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasim Md Abdullah Al .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, A. et al. (2023). Generative Adversarial Networks for Data Augmentation. In: Zheng, B., Andrei, S., Sarker, M.K., Gupta, K.D. (eds) Data Driven Approaches on Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-47772-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47772-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47771-3

  • Online ISBN: 978-3-031-47772-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics