Skip to main content

Visualizing CNN: An Experimental Comparative Study

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14408))

Included in the following conference series:

  • 206 Accesses

Abstract

To intuitively and accurately understand the decision mechanism of Convolutional Neural Networks(CNN), CNN visualization, as an essential part of explainable deep learning, has gradually become a hot topic in artificial intelligence. There have been many achievements in CNN visualization research, such as Gradients, Deconvolution, Class Activation Maps(CAM), etc. But there has been no systematic comparative study on CNN visualization algorithms. The choice of visualization algorithm is critical for accurately explaining the decision process of CNNs. Therefore, an experimental evaluation research on representative CNN visualization algorithms is conducted in this paper for ResNet50 and VGG16 on Caltech101, ImageNet, and VOC2007. The visualization performance is assessed in four aspects: causality, anti-disturbance capability, usability, and computational complexity, and suggestions for selecting CNN visualization algorithms are proposed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ras, G., Xie, N., Van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. J. Artif. Intell. Res. 73, 329–397 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, F.L., Xiong, J., Li, M., Wang, G.: On interpretability of artificial neural networks: a survey. IEEE Trans. Radiat. Plasma Med. Sci. 5(6), 741–760 (2021)

    Article  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. Yang, F., Du, M., Hu, X.: Evaluating explanation without ground truth in interpretable machine learning. arXiv preprint arXiv:1907.06831 (2019)

  6. Yang, M., Kim, B.: Benchmarking attribution methods with relative feature importance. arXiv preprint arXiv:1907.09701 (2019)

  7. Brunke, L., Agrawal, P., George, N.: Evaluating input perturbation methods for interpreting CNNs and saliency map comparison. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 120–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_8

  8. Poppi, S., Cornia, M., Baraldi, L., Cucchiara, R.: Revisiting the evaluation of class activation mapping for explainability: a novel metric and experimental analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2299–2304 (2021)

    Google Scholar 

  9. Samuel, S.Z.S., Kamakshi, V., Lodhi, N., Krishnan, N.C.: Evaluation of saliency-based explainability method. arXiv preprint arXiv:2106.12773 (2021)

  10. Li, J., Lin, D., Wang, Y., Xu, G., Ding, C.: Towards a reliable evaluation of local interpretation methods. Appl. Sci. 11(6), 2732 (2021)

    Article  Google Scholar 

  11. Brocki, L., Chung, N.C.: Evaluation of interpretability methods and perturbation artifacts in deep neural networks. arXiv preprint arXiv:2203.02928 (2022)

  12. Wang, Y., Wang, X.: A unified study of machine learning explanation evaluation metrics. arXiv preprint arXiv:2203.14265 (2022)

  13. Kadir, M.A., Mosavi, A., Sonntag, D.: Assessing xai: unveiling evaluation metrics for local explanation, taxonomies, key concepts, and practical applications

    Google Scholar 

  14. Li, X.H., et al.: Quantitative evaluations on saliency methods: an experimental study. arXiv preprint arXiv:2012.15616 (2020)

  15. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)

  16. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  17. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  18. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision, pp. 2018–2025. IEEE (2011)

    Google Scholar 

  19. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  21. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  22. Wang, H., et al.: Score-cam: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

    Google Scholar 

  23. Ramaswamy, H.G., et al.: Ablation-cam: visual explanations for deep convolutional network via gradient-free localization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 983–991 (2020)

    Google Scholar 

  24. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vision 126(10), 1084–1102 (2018)

    Article  Google Scholar 

  25. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)

  26. Yeh, C.K., Hsieh, C.Y., Suggala, A., Inouye, D.I., Ravikumar, P.K.: On the (in) fidelity and sensitivity of explanations. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Tu, S., Xue, Y., Chai, L. (2023). Visualizing CNN: An Experimental Comparative Study. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14408. Springer, Cham. https://doi.org/10.1007/978-3-031-47665-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47665-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47664-8

  • Online ISBN: 978-3-031-47665-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics