Skip to main content

Fractal Analysis of Electrophysiological Signals to Detect and Monitor Depression: What We Know So Far?

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 229 Accesses

Abstract

Depression is currently one of the most complicated public health problems with the rising number of patients, increasing partly due to pandemics, but also due to increased existential insecurities and complicated aetiology of disease. Besides the tsunami of mental health issues, there are limitations imposed by ambiguous clinical rules of assessment of the symptoms and obsolete and inefficient standard therapy approaches. Here we are summarizing the neuroimaging results pointing out the actual complexity of the disease and novel attempts to detect depression that are evidence-based, mostly related to electrophysiology. It is repeatedly shown that the complexity of resting-state EEG recorded in patients suffering from depression is increased compared to healthy controls. We are discussing here how that can be interpreted and what we can learn about future effective therapies. Also, there is evidence that novel options of treatment, like different modalities of electromagnetic stimulation, are successful just because they are capable of decreasing that aberrated complexity. And complexity measures extracted from electrophysiological signals of depression patients can serve as excellent features for further machine learning models in order to automatize detection. In addition, after initial detection and even selection of responders for further therapy route, it is possible to monitor the therapeutic flow for one person, which leads us to possible tailored treatment for patients suffering from depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiener N. Cybernetics: or control and communication in the animal and the machine. 2nd revised ed. Paris/Cambridge, MA: Hermann & Cie/MIT Press; 1948. ISBN 978-0-262-730099.

    Google Scholar 

  2. Bluhm R, Williamson P, Lanius R, Theberge J, Densmore M, Bartha R, Neufeld R, Osuch E. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiat Clin Neurosci. 2009;63:754–61. https://doi.org/10.1111/j.14401819.2009.02030.x.

    Article  Google Scholar 

  3. Vederine FE, Wessa M, Leboyer M, Houenou JA. Meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:1820–6. https://doi.org/10.1016/j.pnpbp.2011.05.009.

    Article  Google Scholar 

  4. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. Soc Cogn Affect Neurosci. 2011;6:548–55. https://doi.org/10.1093/scan/nsq080.

    Article  PubMed  Google Scholar 

  5. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry. 2011;70:334–42. https://doi.org/10.1016/J.BIOPSYCH.2011.05.018.

    Article  PubMed  Google Scholar 

  6. Kim D, Bolbecker AR, Howell J, Rass O, Sporns O, Hetrick WP, Breier A, O’Donnell BF. Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. NeuroImage Clin. 2013;2:414–23. https://doi.org/10.1016/j.nicl.2013.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen X, Yang R, Kuang D, Zhang L, Lv R, Huang X, et al. Heart rate variability in patients with major depression disorder during a clinical autonomic test. Psychiatry Res. 2017;256:207–11.

    Article  PubMed  Google Scholar 

  8. Grimm S, Schmidt CF, Bermpohl F, Heinzel A, Dahlem Y, Wyss M, Hell D, Boesiger P, Boeker H, Northoff G. Segregated neural representation of distinc emotion dimensions in the prefrontal cortexand fMRI study. NeuroImage. 2006;30:325–40.

    Article  PubMed  Google Scholar 

  9. Ge R, Torres I, Brown JJ, Gregory E, McLellan E, Downar JH, Blumberger DM, Daskalakis ZJ, Lam RW, Vila-Rodriguez F. Functional disconnectivity of the hippocampal network and neural correlates of memory impairment in treatment-resistant depression. J Affect Disord. 2019;253:248–56. https://doi.org/10.1016/j.jad.2019.04.096.

    Article  PubMed  Google Scholar 

  10. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8:828–34.

    Article  CAS  PubMed  Google Scholar 

  11. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord. 2011;1:11. https://doi.org/10.1186/2045-5380-1-11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horn DI, Yu C, Steiner J, et al. Glutamatergic and resting-state functional connectivity correlates of severity in major depression – the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. 2010;4:33. https://doi.org/10.3389/fnsys.2010.00033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Kwaasteniet B, Ruhe E, Caan M, Rive M, Olabarriaga S, Groefsema M, Heesink L, van Wingen G, Denys D. Relation between structural and functional connectivity in major depressive disorder. Biol Psychiatry. 2013;74:40–7. https://doi.org/10.1016/j.biopsych.2012.12.024.

    Article  PubMed  Google Scholar 

  14. Van Essen DC, Ugurbil K, Auerbach E, et al. The human connectome project: a data acquisition perspective. NeuroImage. 2012;62:2222–31. https://doi.org/10.1016/j.neuroimage.2012.02.018.

    Article  PubMed  Google Scholar 

  15. Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP. Clinical applications of the functional connectome. NeuroImage. 2013;80:527–40.

    Article  CAS  PubMed  Google Scholar 

  16. Lee T, Wu Y, Yu YW, Chen M, Chen T. The implication of functional connectivity strength in predicting treatment responseof major depressive disorder: a resting EEG study. Psychiatry Res. 2011;194(3):372–7. https://doi.org/10.1016/j.pscychresns.2011.02.009.

    Article  PubMed  Google Scholar 

  17. Wayne C, Drevets JLP, Furey M. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118. https://doi.org/10.1007/s00429-008-0189-x.

    Article  Google Scholar 

  18. Willner P, Scheel-Krüger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2013;37:2331–71. https://doi.org/10.1016/j.neubiorev.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  19. Willner P, Hale AS, Argyropoulos SV. Dopaminergic mechanism of antidepressant action in depressed patients. J Affect Disord. 2005;86:37–45. https://doi.org/10.1016/j.jad.2004.12.010.

    Article  CAS  PubMed  Google Scholar 

  20. Hamilton JP, Chen G, Thomason ME, Schwartz ME, Gotlib IH. Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data. Mol Psychiatry. 2011;16:763–72.

    Article  CAS  PubMed  Google Scholar 

  21. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy H. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64:461–7.

    Article  PubMed  Google Scholar 

  22. Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage. 2004;22:409–18.

    Article  CAS  PubMed  Google Scholar 

  23. Whelan R, Garavan H. When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry. 2014;75:746–8. https://doi.org/10.1016/j.biopsych.2013.05.014.

    Article  PubMed  Google Scholar 

  24. Gillan CM, Whelan R. What big data can do for treatment in psychiatry. Current Opin Behav Sci. 2017;18:34–42. https://doi.org/10.1016/j.cobeha.2017.07.003.

    Article  Google Scholar 

  25. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543–61.

    Article  CAS  PubMed  Google Scholar 

  26. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging. 2002;23:23–6.

    Article  PubMed  Google Scholar 

  27. Čukić RM, Lopez V, Pavon J. Machine learning approaches for detecting the depression from resting-state electroencephalogram (EEG): a review. J Med Internet Res. 2020a;22:e19548. https://doi.org/10.2196/19548.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nandrino J, Pezard L, Martinerie J, el Massioui F, Renault B, Jouvent R, et al. Decrease of complexity in EEG as a symptomof depression. Neuroreport. 1994;5(4):528–30. https://doi.org/10.1097/00001756-199401120-00042.

    Article  CAS  PubMed  Google Scholar 

  29. De la Torre-Luque А, Bornas X. Complexity and irregularity in the brain oscillations of depressive patients: a systematic review. Neuropsychiatry (London). 2017;5:466–77.

    Google Scholar 

  30. Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11. https://doi.org/10.1016/j.ijpsycho.2012.05.001.

    Article  PubMed  Google Scholar 

  31. Bachmann M, Lass J, Suhhova A, Hinrikus H. Spectral asymmetry and Higuchi’s fractal dimension of depression electroencephalogram. Comput Math Methods Med. 2013;2013:251638. https://doi.org/10.1155/2013/251638. Published online 2013 Oct 22

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A, Ööpik P, et al. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput Methods Prog Biomed. 2018;155:11–7. https://doi.org/10.1016/j.cmpb.2017.11.023.

    Article  Google Scholar 

  33. Čukić M, Pokrajac D, Stokić M, Simić S, Radivojević V, Ljubisavljević M. EEG machine learning with Higuchi’s fractal dimension and sample entropy as features for successful detection of depression. arXiv. 2018;

    Google Scholar 

  34. Lebiecka K, Zuchowicz U, Wozniak-Kwasniewska A, Szekely D, Olejarczyk E, David O. Complexity analysis of EEG data in persons with depression subjected to transcranial magnetic stimulation. Front Physiol. 2018;9:1385. https://doi.org/10.3389/fphys.2018.01385.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Prog Biomed. 2013;109(3):339–45. https://doi.org/10.1016/j.cmpb.2012.10.008.

    Article  Google Scholar 

  36. Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Puthankatti SD, et al. A novel depression diagnosis index using nonlinear features in EEG signals. Eur Neurol. 2015;74(1-2):79–83. https://doi.org/10.1159/000438457.

    Article  PubMed  Google Scholar 

  37. Čukić M, López V, Pavón J. Classification of depression through resting-state electroencephalogram as a novel practice in psychiatry. J Med Internet Res. 2020c;22:e19548. https://doi.org/10.2196/19548.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Llamocca P, López V, Santos M, Cuki’c M. Personalized characterization of emotional states in patients with bipolar disorder. Mathematics. 2021a;9:1174. https://doi.org/10.3390/math9111174.

    Article  Google Scholar 

  39. Llamocca P., López V. and Čukić M.(2021b) The Proposition for future bipolar depres-Sion forecasting based on wearables data collection. Mini review, Front Physiol, Special issue Physio-logging (accepted on November 29 2021, published on January 29 2022) https://www.frontiersin.org/articles/10.3389/fphys.2021.777137/full.

  40. Avots E, Jermakovs K, Bachmann M, Päeske L, Ozcinar C, Anbarjafari G. Ensemble approach for detection of depression using EEG features. Entropy. 2022;24:211. https://doi.org/10.3390/e24020211.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Čukić M, Stikić M, Radenković S, Ljubisavljević M, Simić S, Savić D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. Int J Methods Psychiatr Res. 2019; https://doi.org/10.1002/mpr.1816.

  42. Čukić M, Pokrajac D, Lopez D. On mistakes we made in prior computational psychiatry data driven approach projects and how they jeopardize translation of those findings in clinical practice. A chapter 37 in the book. In: Proceedings of the 2020 intelligent systems conference (IntelliSys), vol. 3; 2020d. (AISC 1252 proceedings), Springer Nature, September 2020. ISSN 2194-5357 ISSN 2194-5365 (electronic); Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-030-55190-2.

    Google Scholar 

  43. Spasić S, Kalauzi A, Culić M, Grbić G, Martać LJ. Estimation of parameter kmax in fractal analysis of rat brain activity. Ann N Y Acad Sci. 2005;1048:427–9. https://doi.org/10.1196/annals.1342.054.

    Article  PubMed  Google Scholar 

  44. Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F. Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS One. 2016;11(2):e0149587. https://doi.org/10.1371/journal.pone.0149587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arns M, Cerquera A, Gutiérrez RM, Hasselman F, Freund JA. Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin Neurophysiol. 2014;125(7):1392–9.

    Article  PubMed  Google Scholar 

  46. Čukić M, Stokić M, Simić S, Pokrajac D. The successful discrimination of depression from EEG could be attributed to proper feature extraction and not to a particular classification method. Cogn Neurodyn. 2020b;14(4):443–55. https://doi.org/10.1007/s11571-020-09581-x.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jaworska N, Wang H, Smith DM, Blier P, Knott V, Protzner AB. Pre-treatment EEG signal variability is associated with treatment success in depression. Neuroimage Clin. 2018a;17:368–77. https://doi.org/10.1016/j.nicl.2017.10.035.

    Article  PubMed  Google Scholar 

  48. Jaworska N, de la Salle S, Ibrahim M, Blier P, Knott V. Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data. Front Psych. 2018b;9:768. https://doi.org/10.3389/fpsyt.2018.00768. [Medline: 30692945]

    Article  Google Scholar 

  49. Lookene M, Neuvonen T, et al. Reduction of symptoms in patients with major depressive disorder after transcranial direct current stimulation treatment: a real-world study. J Affect Dissord Rep. 2022;8:100347.

    Google Scholar 

  50. Walter N, Hintenberger T. Determining states of consciousness in the electroencephalogram based on spectral, complexity, and criticality features. Neurosci Conscious. 2022;8(1):1–10.

    Google Scholar 

  51. Kemp AH, Kemp DS, Quintana MA, Gray KL, Felmingham KB, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry. 2010;67:1067–74. https://doi.org/10.1016/j.biopsych.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  52. Kemp AH, Quintana DS, Felmingham KL, Matthews S, Jelinek HF. Depression, comorbid anxiety disorders, and heart rate variability in PhysicallyHealthy, Unmedicated patients: implications for cardiovascular risk. PLoS One. 2012;7(2):e30777. https://doi.org/10.1371/journal.pone.0030777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kemp AH, Quintana DS, Quinn DR, Hopkinson P, Harris AWF. Major depressive disorder with melancholia displays robust alterations in resting state heart rate and its variability: implications for future morbidity and mortality. Front Psychol. 2014; https://doi.org/10.3389/fpsyg.2014.01387. PMID: 2550589

  54. Čukić M, Chiara R, De Tommasi F, Carassiti M, Formica D, Schena E, Massaroni C. Linear and non-linear heart rate variability indexes from heart-induced mechanical signals recorded with a skin-interfaced IMU. Sensors MDPI; 2023. (second revision Nove 2022)

    Google Scholar 

  55. Koch C, Wilhelm M, Salzmann S, Rief W, Euteneuer F. A meta-analysis of heart rate variability in major depression. Psychol Med. 2019; https://doi.org/10.1017/S0033291719001351.

  56. Massaroni C, et al. Heart rate and heart rate variability indexes estimated by mechanical signals from a skin-interfaced IMU. In: 2022 IEEE international workshop on metrology for industry 4.0 and IoT, MetroInd 4.0 and IoT 2022 – proceedings; 2022. p. 322–7.

    Google Scholar 

  57. Rottenberg J. Cardiac vagal control in depression: a critical analysis. Biol Psychiatry. 2007;74(2):200–11. https://doi.org/10.1016/j.biopsycho.2005.08.010. Epub 2006 Oct 12

    Article  Google Scholar 

  58. Klonowski W. From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine. Nonlinear Biomed Phys. 2007;1(1):5. https://doi.org/10.1186/1753-4631-1-5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Čukić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Čukić, M., Olejarzcyk, E., Bachmann, M. (2024). Fractal Analysis of Electrophysiological Signals to Detect and Monitor Depression: What We Know So Far?. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_34

Download citation

Publish with us

Policies and ethics