Skip to main content

MAP: Domain Generalization via Meta-Learning on Anatomy-Consistent Pseudo-Modalities

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14393))

  • 611 Accesses

Abstract

Deep models suffer from limited generalization capability to unseen domains, which has severely hindered their clinical applicability. Specifically for the retinal vessel segmentation task, although the model is supposed to learn the anatomy of the target, it can be distracted by confounding factors like intensity and contrast. We propose Meta learning on Anatomy-consistent Pseudo-modalities (MAP), a method that improves model generalizability by learning structural features. We first leverage a feature extraction network to generate three distinct pseudo-modalities that share the vessel structure of the original image. Next, we use the episodic learning paradigm by selecting one of the pseudo-modalities as the meta-train dataset, and perform meta-testing on a continuous augmented image space generated through Dirichlet mixup of the remaining pseudo-modalities. Further, we introduce two loss functions that facilitate the model’s focus on shape information by clustering the latent vectors obtained from images featuring identical vasculature. We evaluate our model on seven public datasets of various retinal imaging modalities and we conclude that MAP has substantially better generalizability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aslani, S., Murino, V., Dayan, M., Tam, R., Sona, D., Hamarneh, G.: Scanner invariant multiple sclerosis lesion segmentation from MRI. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 781–785. IEEE (2020)

    Google Scholar 

  2. Ding, L., Bawany, M.H., Kuriyan, A.E., Ramchandran, R.S., Wykoff, C.C., Sharma, G.: A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Trans. Image Process. 29, 6561–6573 (2020)

    Article  MATH  Google Scholar 

  3. Ding, L., Kuriyan, A.E., Ramchandran, R.S., Wykoff, C.C., Sharma, G.: Weakly-supervised vessel detection in ultra-widefield fundus photography via iterative multi-modal registration and learning. IEEE Trans. Med. Imaging 40(10), 2748–2758 (2020)

    Article  Google Scholar 

  4. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  5. Farnell, D., et al.: Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J. Franklin Inst. 345(7), 748–765 (2008)

    Article  MATH  Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  7. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE TMI 19(3), 203–210 (2000)

    Google Scholar 

  8. Hu, D., Cui, C., Li, H., Larson, K.E., Tao, Y.K., Oguz, I.: LIFE: a generalizable autodidactic pipeline for 3D OCT-a vessel segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 514–524. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_49

    Chapter  Google Scholar 

  9. Hu, D., Li, H., Liu, H., Oguz, I.: Domain generalization for retinal vessel segmentation with vector field transformer. In: International Conference on Medical Imaging with Deep Learning, pp. 552–564. PMLR (2022)

    Google Scholar 

  10. Khandelwal, P., Yushkevich, P.: Domain generalizer: a few-shot meta learning framework for domain generalization in medical imaging. In: Albarqouni, S., Xu, Z., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 73–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_8

    Chapter  Google Scholar 

  11. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: International Conference on Machine Learning, pp. 5275–5285. PMLR (2020)

    Google Scholar 

  12. Li, M., et al.: Image projection network: 3D to 2D image segmentation in OCTA images. IEEE TMI 39(11), 3343–3354 (2020)

    Google Scholar 

  13. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  14. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  15. Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE TMI 40(3), 928–939 (2020)

    Google Scholar 

  16. Ouyang, J., Adeli, E., Pohl, K.M., Zhao, Q., Zaharchuk, G.: Representation disentanglement for multi-modal brain MRI analysis. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 321–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_25

    Chapter  Google Scholar 

  17. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38, 35–44 (2004)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shu, Y., Cao, Z., Wang, C., Wang, J., Long, M.: Open domain generalization with domain-augmented meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9624–9633 (2021)

    Google Scholar 

  20. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE TMI 23, 501–509 (2004)

    Google Scholar 

  21. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  22. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  23. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  24. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  25. Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., Zou, J.: How does mixup help with robustness and generalization? arXiv preprint arXiv:2010.04819 (2020)

  26. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4396–4415 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the NIH grant R01EY033969 and the Vanderbilt University Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipek Oguz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, D., Li, H., Liu, H., Yao, X., Wang, J., Oguz, I. (2023). MAP: Domain Generalization via Meta-Learning on Anatomy-Consistent Pseudo-Modalities. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics