Skip to main content

Production of Fine-Grained Ti-6Al-4V ELI for Medical Implants Using Equal-Channel-Angular-Swaging

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2023)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 431 Accesses

Abstract

Multi-resistant bacteria pose a global threat, as infections can lead to life threatening conditions. In orthopaedics, implant surfaces are critical for infection prevention. Implants with a fine-grained surface are a promising way to achieve antibacterial properties by inhibiting biofilm formation.

In this paper, the continuous manufacturing process for fine-grained materials called Equal-Channel-Angular-Swaging (ECAS) is applied to the most commonly used medical titanium alloy Ti-6Al-4VĀ ELI. First, the homogeneity of the shear strain (which is crucial for grain refinement) is investigated in a numerical simulation under different process parameters (e.g. feedrate, counter pressure, number of passes). In the ECAS process, the material fails due to shear bands. Using the process parameters found in the simulation, damage free forming is possible. The material properties are discussed using microstructural analyses, hardness measurements and tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz, F., et al.: Peri-implantitis. J. Clin. Periodontol. 45, 246ā€“266 (2018)

    ArticleĀ  Google ScholarĀ 

  2. Murray, C.J.L., et al.: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629ā€“655 (2022)

    ArticleĀ  Google ScholarĀ 

  3. European Centre for Disease Prevention and Control & World Health Organization: Antimicrobial resistance surveillance in Europe 2022ā€“2020 data. WHO Regional Office for Europe, Copenhagen (2022)

    Google ScholarĀ 

  4. Elias, C.N., et al.: Ultrafine grained titanium for biomedical applications: an overview of performance. J. Markt. Res. 4, 340ā€“350 (2013)

    Google ScholarĀ 

  5. StrĆ”skĆ½, J.: Advanced Titanium Alloys for Medical Applications. Habilitation Thesis, Charles University, Prague (2020)

    Google ScholarĀ 

  6. Gƶrtan, M.O.: Severe plastic deformation of metallic materials by equal channel angular swaging: Theory, experiment and numerical simulation. Dissertation, Technische UniversitƤt Darmstadt, Darmstadt (2014)

    Google ScholarĀ 

  7. Kluy, L., Chi, F., Groche, P.: Equal-Channel-Angular-swaging for the production of medical implants made of fine-grained titanium. In: WGP Production at the Leading Edge of Technology (2021)

    Google ScholarĀ 

  8. Navarro, M., et al.: Biomaterials in orthopaedics. J. R. Soc. Interface 2008, 1137ā€“1158 (2008)

    ArticleĀ  Google ScholarĀ 

  9. Peters, M., Clemens, H.: Titan, Titanlegierungen und Titanaluminide ā€“ Basis fĆ¼r innovative Anwendungen. BHM Berg-HĆ¼ttenmƤnnische Monatshefte 155, 402ā€“408 (2010)

    ArticleĀ  Google ScholarĀ 

  10. Agarwal, K.M., et al.: Simulated analysis of Ti-6Al-4V processed through equal channel angular pressing for biomedical applications. Mater. Sci. Energy Technol. 4, 290ā€“295 (2021)

    Google ScholarĀ 

  11. Oshida, Y.: Bioscience and Bioengineering of Titanium Materials, 2nd edn. Elsevier, Amsterdam (2013)

    Google ScholarĀ 

  12. Lim, S.-S., et al.: Flow stress Ti-6Al-4V during hot deformation: decision tree modeling. Metals 10, 739ā€“749 (2020)

    ArticleĀ  Google ScholarĀ 

  13. Klinge, L., et al.: Nanostructured Ti-13Nb-13Zr for dental implant applications produced by severe plastic deformation. J. Mater. Res. 37, 2581ā€“2588 (2022)

    ArticleĀ  Google ScholarĀ 

  14. Klinge, L., et al.: Nanocrystalline Ti-13Nb-13Zr for dental implant applications. In: Proceedings of the 60th Conference of Metallurgists (2021)

    Google ScholarĀ 

  15. El-Magd, E., et al.: Experimentelle und numerische Untersuchung zum thermomechanischen Stoffverhalten. In: Tƶnshoff, H.K., Hollmann, C. (eds.) Hochgeschwindigkeitsspanen metallischer Werkstoffe, pp. 183ā€“206. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Google ScholarĀ 

  16. ASTM International: Designation, F136-13 (2021): Standard Specification for Wrought Titanium-6Aluminium-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). ASTM International, West Conshohocken, PA, USA (2021)

    Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for funding the IdentiTI project, the German Federal Ministry for Economic Affairs and Climate Action (BMWK) for funding the DIAMOND project, Carsten Siemers, Lina Klinge, Elias Merz and Benjamin Grote, the Joachim Herz Foundation Hamburg, ADVANTIQX Dr. Johannes Scherer, Schweizer Feinwerktechnik GmbH and GFM GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraus, S.O., Kluy, L., Groche, P. (2024). Production of Fine-Grained Ti-6Al-4V ELI for Medical Implants Using Equal-Channel-Angular-Swaging. In: Bauernhansl, T., Verl, A., Liewald, M., Mƶhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2023. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47394-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47394-4_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47393-7

  • Online ISBN: 978-3-031-47394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics