Skip to main content

Approach for Advanced Mechanical Recycling Strategies of Rare Earth Magnets Applied in Traction Drives

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2023)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 477 Accesses

Abstract

Rare Earth (RE) Magnets are crucial for the green transition of the European Union (EU). This applies especially for e-mobility where RE magnets are used for highly efficient traction drives. Permanent magnetic motors offer the best efficiency, but the use of Rare Earth Elements (REEs) is related to several drawbacks. The magnets and the required raw materials are almost exclusively imported. This causes problems for European industry due to supply chain risks and continuously increasing prices. In addition, primary production is associated with a poor ecological footprint. Therefore, the EU has declared REs as critical raw materials with highest supply chain risk and plans a compulsory recycling share of 15% until 2030. Currently, no industrially applicable processes exist for systematic recovery of RE magnets. In this context the following paper should present approaches for an automated process chain starting with an end-of-life traction drive until the extracted and demagnetized magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission. The European Green Deal, Brussels (2019)

    Google Scholar 

  2. European Commission. Regulation of the European Parliament and of the Council: establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020, Brussels (2023)

    Google Scholar 

  3. Barakas, G., Mischo, H., Gutzmer, J.: An outlook on the rare earth elements mining industry (2016)

    Google Scholar 

  4. Golroudbary, S.R., Makarava, I., Kraslawski, A., Repo, E.: Global environmental cost of using rare earth elements in green energy technologies. Sci. Total. Environ. 832, 155022 (2022)

    Article  Google Scholar 

  5. Patil, A.B., Struis, R.P.W.J., Ludwig, C.: Opportunities in critical rare earth metal recycling value chains for economic growth with sustainable technological innovations (2022)

    Google Scholar 

  6. Binnemans, K., Jones, P.T., Müller, T., Yurramendi, L.: Rare earths and the balance problem: how to deal with changing markets? 4, 126 (2018)

    Google Scholar 

  7. Bobba, S., Carrara, S., Huisman, J., Mathieux, F., Pavel, C.: Critical raw materials for strategic technologies and sectors in the EU: a foresight study. Publications Office of the European Union, Luxemburg (2020)

    Google Scholar 

  8. Glöser-Chahoud, S., Kühn, A., Tercero Espinoza, L.: Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium: Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilität auf den Bedarf an Seltenen Erden, Karlsruhe (2016)

    Google Scholar 

  9. Binnemans, K., Jones, P.T., Blanpain, B., van Gerven, T., et al.: Recycling of rare earths: a critical review. 51, 1 (2013)

    Google Scholar 

  10. Gauß, R., et al.: Rare Earth Magnets and Motors: A European Call for Action: A report by the Rare Earth Magnets and Motors Cluster of the European Raw Materials Alliance, Berlin (2021)

    Google Scholar 

  11. Binnemans, K., McGuiness, P., Jones, P.T.: Rare-earth recycling needs market intervention. 6, 459 (2021)

    Google Scholar 

  12. U.S. Department of Energy. Rare Earth Permanent Magnets: Supply Chain Deep Dive Assessment (2022)

    Google Scholar 

  13. München, D.D., Stein, R.T., Veit, H.M.: Rare earth elements recycling potential estimate based on end-of-life NdFeB permanent magnets from mobile phones and hard disk drives in Brazil. 11, 1190 (2021)

    Google Scholar 

  14. Gielen, D., Lyons, M.: Critical materials for the energy transition: rare earth elements (2022)

    Google Scholar 

  15. Sprecher, B., Xiao, Y., Walton, A., Speight, J., et al.: Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ. Sci. Technol. 48, 3951 (2014)

    Article  Google Scholar 

  16. Jin, H., Afiuny, P., McIntyre, T., Yih, Y., et al.: Comparative life cycle assessment of NdFeB magnets: virgin production versus magnet-to-magnet recycling. 48, 45 (2016)

    Google Scholar 

  17. Blengini, G.A., et al.: Study on the EU’s list of critical raw materials (2020): Final report. Publications Office of the European Union, Luxembourg (2020)

    Google Scholar 

  18. Du, X., Graedel, T.E.: Global rare earth in-use stocks in NdFeB permanent magnets. 15, 836 (2011)

    Google Scholar 

  19. Rademaker, J.H., Kleijn, R., Yang, Y.: Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environ. Sci. Technol. 47, 10129 (2013)

    Article  Google Scholar 

  20. Reimer, M., Schenk-Mathes, H., Hoffmann, M., Elwert, T.: Recycling decisions in 2020, 2030, and 2040—when can substantial NdFeB extraction be expected in the EU? 8, 867 (2018)

    Google Scholar 

  21. Ciacci, L., Vassura, I., Cao, Z., Liu, G., et al.: Recovering the “new twin”: analysis of secondary neodymium sources and recycling potentials in Europe. 142, 143 (2019)

    Google Scholar 

  22. Elwert, T., Schwarz, S., Bergamos, M., Kammer, U.: Entwicklung einer industriell umsetzbaren Recycling-Technologiekette für NdFeB-Magnete – SEMAREC. In: Recycling und Rohstoffe, Thomé-Kozmiensky Verlag GmbH, Neuruppin, p. 253 (2018)

    Google Scholar 

  23. Maani, T., Mathur, N., Singh, S., Rong, C., et al.: Potential for Nd and Dy recovery from end-of-life products to meet future electric vehicle demand in the U.S. 98, 109 (2021)

    Google Scholar 

  24. European Environment Agency. New registrations of electric cars, EU-27. https://www.eea.europa.eu/data-and-maps/daviz/new-electric-vehicles-in-eu-2#tab-chart_3

  25. European Commission. Sustainable and Smart Mobility Strategy: Putting European transport on track for the future, Brussels (2020)

    Google Scholar 

  26. Raghuraman, B., Nategh, S., Sidiropoulos, N., Petersson, L., et al.: Sustainability aspects of electrical machines for E-mobility applications part I: a design with reduced rare-earth elements. In: 47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021, p. 1. IEEE (2021)

    Google Scholar 

  27. Goodenough, K.M., Wall, F., Merriman, D.: The rare earth elements: demand, global resources, and challenges for resourcing future. Generations 27, 201 (2018)

    Google Scholar 

  28. Flemming, J., et al.: Wertschöpfungspotenziale von E-Motoren für den Automobilbereich in Baden-Württemberg: Themenpapier Cluster Elektromobilität Süd-West

    Google Scholar 

  29. Kampker, A., Heimes, H., Dorn, B.: Elektromotoren-Produktion: Die Wertschöpfungskette im Spannungsfeld von “Market Pull” und “Technology Push”, Aachen (2022)

    Google Scholar 

  30. Tschöke, H., Gutzmer, P., Pfund, T.: Elektrifizierung des Antriebsstrangs. Springer, Heidelberg (2019)

    Book  Google Scholar 

  31. Alves Dias, P., Bobba, S., Carrara, S., Plazzotta, B.: The role of rare earth elements in wind energy and electric mobility: an analysis of future supply/demand balances. Publications Office of the European Union, Luxembourg (2020)

    Google Scholar 

  32. Rizos, V., Righetti, E., Amin, K.: Developing a supply chain for recycled rare earth permanent magnets in the EU: CEPS In-Depth Analysis, Brussels (2022)

    Google Scholar 

  33. Hwang, M.-H., Han, J.-H., Kim, D.-H., Cha, H.-R.: Design and analysis of rotor shapes for IPM motors in EV power traction platforms. 11, 2601 (2018)

    Google Scholar 

  34. Al-Qarni, A., EL-Refaie, A.: On eliminating heavy rare-earth PM elements for high power density traction application motors. In: 2021 IEEE International Electric Machines & Drives Conference (IEMDC), p. 1. IEEE (2021)

    Google Scholar 

  35. Du, Z.S., Lipo, T.A.: High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets. 55, 2601 (2019)

    Google Scholar 

  36. Sato, E.: Permanent magnet synchronous motor drives for hybrid electric vehicles. 2, 162 (2007)

    Google Scholar 

  37. Henneberger, S., Van Haute, S., Hameyer, K., Belmans, R.: Design of a 45 kW Permanent Magnet Synchronous Motor for a Hybrid Electric Vehicle, Leuven (1997)

    Google Scholar 

  38. Smith, B.J., Eggert, R.G.: Multifaceted material substitution: the case of NdFeB magnets, 2010–2015. 68, 1964 (2016)

    Google Scholar 

  39. Elwert, T., Goldmann, D., Roemer, F., Schwarz, S.: Recycling of NdFeB magnets from electric drive motors of (hybrid) electric vehicles. 3, 108 (2017)

    Google Scholar 

  40. Jönsson, C., Awais, M., Pickering, L., Degri, M., et al.: The extraction of NdFeB magnets from automotive scrap rotors using hydrogen. 277, 124058 (2020)

    Google Scholar 

  41. Gielen, D.: Critical minerals for the energy transition (2021)

    Google Scholar 

  42. Yang, Y., Walton, A., Sheridan, R., Güth, K., et al.: REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review. 3, 122 (2017)

    Google Scholar 

  43. Glöser-Chahoud, S., Pfaff, M., Tercero Espinoza, L., Faulstich, M.: Dynamische Materialfluss-Analyse der Magnetwerkstoffe Neodym und Dysprosium, Tutzing (2016)

    Google Scholar 

  44. Leader, A., Gaustad, G.: Critical material applications and intensities in clean energy technologies. 1, 164 (2019)

    Google Scholar 

  45. Sakai, S., Yoshida, H., Hiratsuka, J., Vandecasteele, C., et al.: An international comparative study of end-of-life vehicle (ELV) recycling systems. 16, 1 (2014)

    Google Scholar 

  46. Martens, H., Goldmann, D.: Recyclingtechnik. Springer Fachmedien Wiesbaden, Wiesbaden (2016)

    Google Scholar 

  47. Klier, T., Risch, F., Franke, J.: Disassembly, recycling, and reuse of magnet material of electric drives. In: 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM), p. 88. IEEE (2013)

    Google Scholar 

  48. Fleischer, J., Gerlitz, E., Rieβ, S., Coutandin, S., et al.: Concepts and requirements for flexible disassembly systems for drive train components of electric vehicles. 98, 577 (2021)

    Google Scholar 

  49. Van Haute, S., Henneberger, S., Hameyer, K., Belmans, R., De Temmerman, J., De Clercq, J.: Design and control of a Permanent Magnet Synchronous Motor Drive for a Hybrid Electric Vehicle, Leuven (1996)

    Google Scholar 

  50. Bast, U., et al.: Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben: Abschlussbericht zum Verbundvorhaben (2014)

    Google Scholar 

  51. Buch, X., Shanahan, M.E.R.: Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive. 76, 987 (2000)

    Google Scholar 

Download references

Acknowledgements

The presented results have been obtained in context of research activities at the Institute for Factory Automation and Production Systems (FAPS) of the Friedrich-Alexander University Erlangen-Nuremberg (FAU). This research has been funded by the European Union Grant Agreement N° 101057733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Ihne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ihne, T., Hahn, R., Wieprecht, N., Franke, J., Kühl, A. (2024). Approach for Advanced Mechanical Recycling Strategies of Rare Earth Magnets Applied in Traction Drives. In: Bauernhansl, T., Verl, A., Liewald, M., Möhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2023. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47394-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47394-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47393-7

  • Online ISBN: 978-3-031-47394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics