Skip to main content

A Unified Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-Weighted MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relies on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliotta, E., Nourzadeh, H., Sanders, J., Muller, D., Ennis, D.B.: Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks. Med. Phys. 46(4), 1581–1591 (2019)

    Article  Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  3. Cai, L.Y., et al.: Convolutional-recurrent neural networks approximate diffusion tractography from T1-weighted MRI and associated anatomical context. bioRxiv, pp. 2023–02 (2023)

    Google Scholar 

  4. Cheng, J., Ghosh, A., Jiang, T., Deriche, R.: Model-free and analytical EAP reconstruction via spherical polar Fourier diffusion MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 590–597. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_72

    Chapter  Google Scholar 

  5. Cheng, J., Jiang, T., Deriche, R.: Theoretical analysis and practical insights on EAP estimation via a unified HARDI framework. In: MICCAI Workshop on Computational Diffusion MRI (CDMRI) (2011)

    Google Scholar 

  6. Cobb, O.J., et al.: Efficient generalized spherical CNNs. arXiv preprint arXiv:2010.11661 (2020)

  7. Descoteaux, M.: High angular resolution diffusion imaging (HARDI). Wiley Encycl. Electr. Electron. Eng. 1–25 (1999)

    Google Scholar 

  8. Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C.: Multiple Q-shell diffusion propagator imaging. Med. Image Anal. 15(4), 603–621 (2011)

    Article  Google Scholar 

  9. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  10. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  11. Goodwin-Allcock, T., McEwen, J., Gray, R., Nachev, P., Zhang, H.: How can spherical CNNs benefit ml-based diffusion MRI parameter estimation? In: Cetin-Karayumak, S., et al. (eds.) CDMRI 2022. LNCS, vol. 13722, pp. 101–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21206-2_9

    Chapter  Google Scholar 

  12. Hansen, C.B., et al.: Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion MRI. Magn. Reson. Imaging 93, 73–86 (2022)

    Article  Google Scholar 

  13. Huo, Y., et al.: 3D whole brain segmentation using spatially localized atlas network tiles. Neuroimage 194, 105–119 (2019)

    Article  Google Scholar 

  14. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  15. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  16. Liu, H., et al.: ModDrop++: a dynamic filter network with intra-subject co-training for multiple sclerosis lesion segmentation with missing modalities. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 444–453. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_43

    Chapter  Google Scholar 

  17. Müller, P., Golkov, V., Tomassini, V., Cremers, D.: Rotation-equivariant deep learning for diffusion MRI. arXiv preprint arXiv:2102.06942 (2021)

  18. Nath, V., et al.: Inter-scanner harmonization of high angular resolution DW-MRI using null space deep learning. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C.M.W. (eds.) MICCAI 2019. MV, pp. 193–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05831-9_16

    Chapter  Google Scholar 

  19. Nath, V., et al.: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magn. Reson. Imaging 62, 220–227 (2019)

    Article  Google Scholar 

  20. Özarslan, E., et al.: Mean apparent propagator (map) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16–32 (2013)

    Article  Google Scholar 

  21. Schilling, K.G., et al.: Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow. Neuroimage 242, 118451 (2021)

    Article  Google Scholar 

  22. Sedlar, S., Alimi, A., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: A spherical convolutional neural network for white matter structure imaging via dMRI. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part III. LNCS, vol. 12903, pp. 529–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_50

    Chapter  Google Scholar 

  23. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

  24. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  25. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  26. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  27. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  28. Xiang, T., Yurt, M., Syed, A.B., Setsompop, K., Chaudhari, A.: DDM2: self-supervised diffusion mri denoising with generative diffusion models. arXiv preprint arXiv:2302.03018 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyuan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, T. et al. (2023). A Unified Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-Weighted MRI. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics