Skip to main content

Sanity-Checking Multiple Levels of Classification

A Formal Approach with a ConceptBase Implementation

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2023)

Abstract

Multiple levels of classification naturally occur in many domains. Several multi-level modeling approaches account for this and a subset of them attempt to provide their users with sanity-checking mechanisms in order to guard them against conceptually ill-formed models. Historically, the respective multi-level well-formedness schemes have either been overly restrictive or too lax. Orthogonal Ontological Classification has been proposed as a foundation that combines the selectivity of strict schemes with the flexibility afforded by laxer schemes. In this paper, we present a formalization of Orthogonal Ontological Classification, which we empirically validated to demonstrate some of its hitherto only postulated claims using an implementation in ConceptBase. We discuss both the formalization and the implementation, and report on the limitations we encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abiteboul, S., Hull, R.: Data functions, datalog and negation. SIGMOD Rec. 17(3), 143–153 (1988). https://doi.org/10.1145/971701.50218

    Article  Google Scholar 

  2. Almeida, J.P.A., Fonseca, C.M., Carvalho, V.A.: A comprehensive formal theory for multi-level conceptual modeling. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 280–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_23

    Chapter  Google Scholar 

  3. Atkinson, C.: Meta-modeling for distributed object environments. In: Enterprise Distributed Object Computing, pp. 90–101. IEEE (1997)

    Google Scholar 

  4. Atkinson, C., Gerbig, R.: Melanie: Multi-level modeling and ontology engineering environment. In: Proceedings of Modeling Wizards 2012. ACM (2012)

    Google Scholar 

  5. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1_3

    Chapter  Google Scholar 

  6. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans. Model. Comput. Simul. 12(4), 290–321 (2003)

    Article  Google Scholar 

  7. Atkinson, C., Kühne, T.: Concepts for comparing modeling tool architectures. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 398–413. Springer, Heidelberg (2005). https://doi.org/10.1007/11557432_30

    Chapter  Google Scholar 

  8. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Softw. Syst. Model. 7(3), 345–359 (2008). https://doi.org/10.1007/s10270-007-0061-0

    Article  Google Scholar 

  9. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Applying a multi-level modeling theory to assess taxonomic hierarchies in Wikidata. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 975–980. WWW ’16 Companion, International World Wide Web Conferences Steering Committee (2016). https://doi.org/10.1145/2872518.2891117

  10. Dadalto, A.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Type or individual? evidence of large-scale conceptual disarray in Wikidata. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 367–377. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_29

    Chapter  Google Scholar 

  11. Fonseca, C.M., Almeida, J.P.A., Guizzardi, G., Carvalho, V.A.: Multi-level conceptual modeling: from a formal theory to a well-founded language. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 409–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_29

    Chapter  Google Scholar 

  12. Frank, U.: Multilevel modeling. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014). https://doi.org/10.1007/s12599-014-0350-4

    Article  Google Scholar 

  13. Gitzel, R., Merz, M.: How a relaxation of the strictness definition can benefit MDD approaches with meta model hierarchies. In: Proceedings of the 8\(^{th}\) World Multi-Conference on Systemics, Cybernetics & Informatics, vol. IV, pp. 62–67 (2004)

    Google Scholar 

  14. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_2

    Chapter  Google Scholar 

  15. Jeusfeld, M.A.: Metamodeling and method engineering with ConceptBase. In: Metamodeling for Method Engineering, pp. 89–168. MIT Press (2009)

    Google Scholar 

  16. Jeusfeld, M.A., Almeida, J.A.P.A., Carvalho, V.A., Fonseca, C.M., Neumayr, B.: Deductive reconstruction of MLT* for multi-level modeling. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS 2020 (2020). https://doi.org/10.1145/3417990.3421410

  17. Jeusfeld, M.A., Kühne, T.: ConceptBase implementation of MDM. Project Web Site (2023), https://conceptbase.sourceforge.net/mdm-er2023/

  18. Jeusfeld, M.A., Neumayr, B.: DeepTelos: multi-level modeling with most general instances. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 198–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_15

    Chapter  Google Scholar 

  19. Koubarakis, M., et al.: A retrospective on Telos as a metamodeling language for requirements engineering. Requirements Eng. 26(1), 1–23 (2020). https://doi.org/10.1007/s00766-020-00329-x

    Article  Google Scholar 

  20. Kühne, T.: Exploring potency. In: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems (MODELS 2018). ACM (2018). https://doi.org/10.1145/3239372.3239411

  21. Kühne, T.: Multi-dimensional multi-level modeling. Softw. Syst. Model. 21(2), 543–559 (2021). https://doi.org/10.1007/s10270-021-00951-5

    Article  Google Scholar 

  22. Kühne, T., Lange, A.: Melanee and DLM: a contribution to the MULTI collaborative comparison challenge. In: Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, pp. 434–443. MODELS 2022, ACM, NY, USA (2022). https://doi.org/10.1145/3550356.3561571

  23. Lange, A., Atkinson, C.: Multi-level modeling with LML – a contribution to the multi-level process challenge. Int. J. Conceptual Model. 17, 6–1 (2022). https://doi.org/10.18417/emisa.17.6. special Issue: Multi-Level Process Challenge

  24. de Lara, J., Guerra, E., Cobos, R., Moreno-Llorena, J.: Extending deep meta-modelling for practical model-driven engineering. Comput. J. 57(1), 36–58 (2012). https://doi.org/10.1093/comjnl/bxs144

    Article  Google Scholar 

  25. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge about information systems. Inf. Syst. 8(4), 325–362 (1990)

    Google Scholar 

  26. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual deep instantiation and its conceptbase implementation. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 503–517. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_34

    Chapter  Google Scholar 

  27. Partridge, C., de Cesare, S., Mitchell, A., Odell, J.: Formalization of the classification pattern: survey of classification modeling in information systems engineering. Softw. Syst. Model. 17(1), 167–203 (2016). https://doi.org/10.1007/s10270-016-0521-5

    Article  Google Scholar 

  28. Partridge, C., et al.: Implicit requirements for ontological multi-level types in the uniclass classification. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS 2020 (2020). https://doi.org/10.1145/3417990.3421414

  29. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materialization: a powerful and ubiquitous abstraction pattern. In: Proceedings of the 20\(^{th}\) International Conference on Very Large Data Bases (VLDB 1994), pp. 630–641. Morgan Kaufman (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kühne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kühne, T., Jeusfeld, M.A. (2023). Sanity-Checking Multiple Levels of Classification. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham. https://doi.org/10.1007/978-3-031-47262-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47262-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47261-9

  • Online ISBN: 978-3-031-47262-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics