Skip to main content

Neural Multi-hop Logical Query Answering with Concept-Level Answers

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14265))

Included in the following conference series:

  • 1372 Accesses

Abstract

Neural multi-hop logical query answering (LQA) is a fundamental task to explore relational data such as knowledge graphs, which aims at answering multi-hop queries with logical operations based on distributed representations of queries and answers. Although previous LQA methods can give specific instance-level answers, they are not able to provide descriptive concept-level answers, where each concept is a description of a set of instances. Concept-level answers are more comprehensible to users and are of great usefulness in the field of applied ontology. In this work, we formulate the problem of LQA with concept-level answers (LQAC), solving which needs to address challenges in incorporating, representing, and operating on concepts. We propose an original solution for LQAC. Firstly, we incorporate description logic-based ontological axioms to provide the source of concepts. Then, we represent concepts and queries as fuzzy sets, i.e., sets whose elements have degrees of membership, to bridge concepts and queries with instances. Moreover, we design operators involving concepts on top of fuzzy set representation of concepts and queries for optimization and inference. Extensive experimental results on three real-world datasets demonstrate the effectiveness of our method for LQAC. In particular, we show that our method is promising in discovering complex logical biomedical facts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/snap-stanford/KGReasoning.

  2. 2.

    https://yago-knowledge.org/downloads/yago-4.

  3. 3.

    http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html.

  4. 4.

    https://bio2vec.cbrc.kaust.edu.sa/data/elembeddings/el-embeddings-data.zip.

  5. 5.

    http://geneontology.org/.

  6. 6.

    https://github.com/lilv98/LQAC.

References

  1. Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering with neural link predictors. In: ICLR (2020)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Baader, F.: Appendix: description logic terminology. In: The Description Logic Handbook: Theory, Implementation, and Applications, pp. 485–495 (2003)

    Google Scholar 

  4. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  6. Baader, F., Horrocks, I., Sattler, U.: Description logics. Found. Artif. Intell. 3, 135–179 (2008)

    Article  MATH  Google Scholar 

  7. Bai, Y., Lv, X., Li, J., Hou, L.: Answering complex logical queries on knowledge graphs via query tree optimization. arXiv preprint arXiv:2212.09567 (2022)

  8. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS, vol. 26 (2013)

    Google Scholar 

  9. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.: Owl2vec*: embedding of owl ontologies. In: Machine Learning, pp. 1–33 (2021)

    Google Scholar 

  10. Chen, X., Hu, Z., Sun, Y.: Fuzzy logic based logical query answering on knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3939–3948 (2022)

    Google Scholar 

  11. Choudhary, N., Rao, N., Katariya, S., Subbian, K., Reddy, C.K.: Self-supervised hyperboloid representations from logical queries over knowledge graphs. In: WWW, pp. 1373–1384 (2021)

    Google Scholar 

  12. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49(7), 1858–1860 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  14. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  15. Hamilton, W.L., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical queries on knowledge graphs. In: NeurIPS, pp. 2030–2041 (2018)

    Google Scholar 

  16. Hao, J., Chen, M., Yu, W., Sun, Y., Wang, W.: Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts. In: KDD, pp. 1709–1719 (2019)

    Google Scholar 

  17. Hao, J., Ju, C.J.T., Chen, M., Sun, Y., Zaniolo, C., Wang, W.: Bio-joie: joint representation learning of biological knowledge bases. In: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 1–10 (2020)

    Google Scholar 

  18. Huitzil, I., Bernad, J., Bobillo, F.: Algorithms for instance retrieval and realization in fuzzy ontologies. Mathematics 8(2), 154 (2020)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. position paper i: basic analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)

    Google Scholar 

  21. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, vol. 4. Prentice hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  22. van Krieken, E., Acar, E., van Harmelen, F.: Analyzing differentiable fuzzy implications. In: KR, pp. 893–903. IJCAI Organization (2020)

    Google Scholar 

  23. Kulmanov, M., Liu-Wei, W., Yan, Y., Hoehndorf, R.: El embeddings: Geometric construction of models for the description logic el++. IJCAI (2019)

    Google Scholar 

  24. Kulmanov, M., Smaili, F.Z., Gao, X., Hoehndorf, R.: Semantic similarity and machine learning with ontologies. Brief. Bioinf. 22(4), bbaa199 (2021)

    Google Scholar 

  25. Lee, R.C.: Fuzzy logic and the resolution principle. J. ACM (JACM) 19(1), 109–119 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, S., Chen, H., Ren, Z., Feng, Y., Liu, Q., Yin, D.: Knowledge diffusion for neural dialogue generation. In: ACL, pp. 1489–1498 (2018)

    Google Scholar 

  27. Luus, F., et al.: Logic embeddings for complex query answering. arXiv preprint arXiv:2103.00418 (2021)

  28. Mondala, S., Bhatiab, S., Mutharajua, R.: Emel++: embeddings for description logic (2021)

    Google Scholar 

  29. Ren, H., Hu, W., Leskovec, J.: Query2box: reasoning over knowledge graphs in vector space using box embeddings. In: ICLR (2019)

    Google Scholar 

  30. Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in knowledge graphs. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  31. Rihoux, B., De Meur, G.: Crisp-set qualitative comparative analysis (csqca). In: Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques, vol. 51, pp. 33–68 (2009)

    Google Scholar 

  32. Smaili, F.Z., Gao, X., Hoehndorf, R.: Opa2vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction. Bioinformatics 35(12), 2133–2140 (2019)

    Article  Google Scholar 

  33. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotech. 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  34. Tang, Z., et al.: Positive-unlabeled learning with adversarial data augmentation for knowledge graph completion. In: IJCAI (2022)

    Google Scholar 

  35. Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_34

    Chapter  Google Scholar 

  36. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, vol. 33, pp. 297–304 (2019)

    Google Scholar 

  37. Xiong, B., Potyka, N., Tran, T.K., Nayyeri, M., Staab, S.: Faithful embeddings for el++ knowledge bases. In: The Semantic Web-ISWC 2022: 21st International Semantic Web Conference, Virtual Event, 23–27 October 2022, Proceedings, pp. 22–38. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19433-7_2

  38. Zhang, Z., Wang, J., Chen, J., Ji, S., Wu, F.: Cone: cone embeddings for multi-hop reasoning over knowledge graphs. Adv. Neural. Inf. Process. Syst. 34, 19172–19183 (2021)

    Google Scholar 

  39. Zhou, K., Zhao, W.X., Bian, S., Zhou, Y., Wen, J.R., Yu, J.: Improving conversational recommender systems via knowledge graph based semantic fusion. In: KDD, pp. 1006–1014 (2020)

    Google Scholar 

  40. Zhu, Z., Galkin, M., Zhang, Z., Tang, J.: Neural-symbolic models for logical queries on knowledge graphs. arXiv preprint arXiv:2205.10128 (2022)

Download references

Acknowledgements

This work has been supported by funding from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/5041-01-01, the National Key Research and Development Program of China under Grant No. 2021ZD0113602, and the National Natural Science Foundation of China under Grant Nos. 62176014, the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Pei, S., Peng, X., Zhuang, F., Zhang, X., Hoehndorf, R. (2023). Neural Multi-hop Logical Query Answering with Concept-Level Answers. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47240-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47239-8

  • Online ISBN: 978-3-031-47240-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics