Skip to main content

Causal Inference-Based Debiasing Framework for Knowledge Graph Completion

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14265))

Included in the following conference series:

Abstract

The task of Knowledge Graph Completion (KGC) entails inferring missing relations and facts in a partially specified graph to discover new knowledge. However, the discrepancy in the targets between the training and inference phases might lead to in-depth bias and in-breadth bias during inference, potentially resulting in incorrect outcomes. In this work, we conduct a comprehensive analysis of these biases to determine their extent of impact. To mitigate these biases, we propose a novel debiasing framework called Causal Inference-based Debiasing Framework for KGC (CIDF) by formulating a causal graph and utilizing it for causal analysis of KGC tasks. The framework incorporates In-Depth Bias Mitigation to diminish the bias on feature representations by measuring the bias during inference, and In-Breadth Bias Mitigation to increase the distinguishability between feature representations by introducing a novel loss function. We evaluate the effectiveness of our proposed method on four benchmark datasets - WN18RR, FB15k-237, Wikidata5M-Trans, and Wikidata5M-Ind, achieving improvements of 2.5%, 0.9%, 3.2%, and 1.5% on Hit@1 respectively. Our results demonstrate that CIDF leads to significant improvements on these datasets, with more substantial gains observed in the biased settings on WN18RR achieving a 3.4% improvement in Hit@1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://deepgraphlearning.github.io/project/wikidata5m.

References

  1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. SIGMOD 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1376616.1376746

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems. vol. 26. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

  3. Bourli, S., Pitoura, E.: Bias in knowledge graph embeddings. In: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 6–10 (2020). https://doi.org/10.1109/ASONAM49781.2020.9381459

  4. Chang, H., Cai, J., Li, J.: Knowledge graph completion with counterfactual augmentation. In: Proceedings of the ACM Web Conference 2023, pp. 2611–2620. WWW 2023, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3543507.3583401

  5. Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: HittER: hierarchical transformers for knowledge graph embeddings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10395–10407. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.emnlp-main.812

  6. Daza, D., Cochez, M., Groth, P.: Inductive entity representations from text via link prediction. In: Proceedings of the Web Conference 2021, pp. 798–808. WWW 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3442381.3450141

  7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-2018), the 30th innovative Applications of Artificial Intelligence (IAAI-2018), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-2018), New Orleans, Louisiana, USA, February 2–7, 2018, pp. 1811–1818. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423

  9. Ding, M., Zhou, C., Chen, Q., Yang, H., Tang, J.: Cognitive graph for multi-hop reading comprehension at scale. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2694–2703. Association for Computational Linguistics, Florence, Italy, July 2019. https://doi.org/10.18653/v1/P19-1259

  10. Du, Y., Zheng, Q., Wu, Y., Lan, M., Yang, Y., Ma, M.: Understanding gender bias in knowledge base embeddings. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1381–1395. Association for Computational Linguistics, Dublin, Ireland, May 2022. https://doi.org/10.18653/v1/2022.acl-long.98

  11. Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., Tang, J.: GLM: general language model pretraining with autoregressive blank infilling. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 320–335. Association for Computational Linguistics, Dublin, Ireland, May 2022. https://doi.org/10.18653/v1/2022.acl-long.26

  12. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  13. Guo, D., Tang, D., Duan, N., Zhou, M., Yin, J.: Dialog-to-action: conversational question answering over a large-scale knowledge base. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf

  14. Jia, T., Yang, Y., Lu, X., Zhu, Q., Yang, K., Zhou, X.: Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug. Data Intell. 4(1), 134–148 (2022). https://doi.org/10.1162/dint_a_00117

  15. Keidar, D., Zhong, M., Zhang, C., Shrestha, Y.R., Paudel, B.: Towards automatic bias detection in knowledge graphs. In: Findings of the Association for Computational Linguistics: EMNLP 2021. pp. 3804–3811. Association for Computational Linguistics, Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.findings-emnlp.321

  16. Kraft, A., Usbeck, R.: The lifecycle of “facts”: a survey of social bias in knowledge graphs. In: Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 639–652. Association for Computational Linguistics, Online only, November 2022. https://aclanthology.org/2022.aacl-main.49

  17. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 2869–2878. PMLR (2018). http://proceedings.mlr.press/v80/lacroix18a.html

  18. Lehmann, J., et al.: DBPedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015). https://doi.org/10.3233/SW-140134

    Article  Google Scholar 

  19. Li, D., Yang, S., Xu, K., Yi, M., He, Y., Wang, H.: Multi-task pre-training language model for semantic network completion. arXiv preprint arXiv:2201.04843 (2022). https://arxiv.org/abs/2201.04843

  20. Liu, Z., Nguyen, T.K., Fang, Y.: Tail-GNN: tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1109–1119. KDD 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447548.3467276

  21. Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., Li, J.: Learning fair node representations with graph counterfactual fairness. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 695–703. WSDM 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3488560.3498391

  22. Malaviya, C., Bhagavatula, C., Bosselut, A., Choi, Y.: Commonsense knowledge base completion with structural and semantic context. Proc. AAAI Conf. Artif. Intell. 34(03), 2925–2933 (2020). https://doi.org/10.1609/aaai.v34i03.5684

    Article  Google Scholar 

  23. Miller, G.A.: WordNet: a lexical database for English. In: Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York, 23–26 February 1992 (1992). https://aclanthology.org/H92-1116

  24. Moon, S., Shah, P., Kumar, A., Subba, R.: OpenDialKG: explainable conversational reasoning with attention-based walks over knowledge graphs. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 845–854. Association for Computational Linguistics, Florence, Italy, July 2019. https://doi.org/10.18653/v1/P19-1081

  25. Nan, G., Qiao, R., Xiao, Y., Liu, J., Leng, S., Zhang, H., Lu, W.: Interventional video grounding with dual contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2765–2775, June 2021

    Google Scholar 

  26. Nan, G., Zeng, J., Qiao, R., Guo, Z., Lu, W.: Uncovering main causalities for long-tailed information extraction. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 9683–9695. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.emnlp-main.763

  27. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28–July 2, 2011, pp. 809–816. Omnipress (2011). https://icml.cc/2011/papers/438_icmlpaper.pdf

  28. Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. John Wiley & Sons, New York (2016)

    Google Scholar 

  29. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic Books (2018)

    Google Scholar 

  30. Qian, C., Feng, F., Wen, L., Ma, C., Xie, P.: Counterfactual inference for text classification debiasing. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5434–5445. Association for Computational Linguistics, Online, August 2021. https://doi.org/10.18653/v1/2021.acl-long.422

  31. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI blog (2019). https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

  32. Radstok, W., Chekol, M.W., Schäfer, M.T.: Are knowledge graph embedding models biased, or is it the data that they are trained on? In: Kaffee, L., Razniewski, S., Hogan, A. (eds.) Proceedings of the 2nd Wikidata Workshop (Wikidata 2021) co-located with the 20th International Semantic Web Conference (ISWC 2021), Virtual Conference, October 24, 2021. CEUR Workshop Proceedings, vol. 2982. CEUR-WS.org (2021). https://ceur-ws.org/Vol-2982/paper-5.pdf

  33. Shomer, H., Jin, W., Wang, W., Tang, J.: Toward degree bias in embedding-based knowledge graph completion. In: Proceedings of the ACM Web Conference 2023, pp. 705–715. WWW 2023, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3543507.3583544

  34. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HkgEQnRqYQ

  35. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66. Association for Computational Linguistics, Beijing, China, July 2015. https://doi.org/10.18653/v1/W15-4007

  36. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. In: Proceedings of Machine Learning Research, vol. 48, pp. 2071–2080. PMLR, New York, New York, USA, 20–22 June 2016. https://proceedings.mlr.press/v48/trouillon16.html

  37. Wang, L., Zhao, W., Wei, Z., Liu, J.: SimKGC: simple contrastive knowledge graph completion with pre-trained language models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4281–4294. Association for Computational Linguistics, Dublin, Ireland, May 2022. https://doi.org/10.18653/v1/2022.acl-long.295

  38. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. Proc. AAAI Conf. Artif. Intell. 33(01), 5329–5336 (2019). https://doi.org/10.1609/aaai.v33i01.33015329

    Article  Google Scholar 

  39. Wang, X., et al.: KEPLER: a unified Model for Knowledge Embedding and Pre-trained Language Representation. Trans. Assoc. Comput. Linguist. 9, 176–194 (2021). https://doi.org/10.1162/tacl_a_00360

  40. Wang, Y., et al.: Should we rely on entity mentions for relation extraction? Debiasing relation extraction with counterfactual analysis. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3071–3081. Association for Computational Linguistics, Seattle, United States, July 2022. https://doi.org/10.18653/v1/2022.naacl-main.224

  41. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 27–31 July 2014, Québec City, Québec, Canada, pp. 1112–1119. AAAI Press (2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531

  42. Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 285–294. SIGIR 2019, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3331184.3331203

  43. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6575

  44. Yang, Z., Liu, Y., Ouyang, C., Ren, L., Wen, W.: Counterfactual can be strong in medical question and answering. Inf. Process. Manage. 60(4), 103408 (2023). https://doi.org/10.1016/j.ipm.2023.103408

    Article  Google Scholar 

  45. Zamini, M., Reza, H., Rabiei, M.: A review of knowledge graph completion. Information. 13(8), 396 (2022). https://doi.org/10.3390/info13080396

  46. Zhang, D., Zhang, H., Tang, J., Hua, X.S., Sun, Q.: Causal intervention for weakly-supervised semantic segmentation. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 655–666. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/07211688a0869d995947a8fb11b215d6-Paper.pdf

  47. Zhang, X., Cui, P., Xu, R., Zhou, L., He, Y., Shen, Z.: Deep stable learning for out-of-distribution generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5372–5382, June 2021

    Google Scholar 

  48. Zhang, Y., Dai, H., Kozareva, Z., Smola, A., Song, L.: Variational reasoning for question answering with knowledge graph. Proc. AAAI Conf. Artif. Intell. 32(1), 1–8 (2018). https://doi.org/10.1609/aaai.v32i1.12057

    Article  Google Scholar 

  49. Zhang, Z., Cai, J., Zhang, Y., Wang, J.: Learning hierarchy-aware knowledge graph embeddings for link prediction. Proc. AAAI Conf. Artif. Intell. 34(03), 3065–3072 (2020). https://doi.org/10.1609/aaai.v34i03.5701

    Article  Google Scholar 

  50. Zhao, T., Zhang, X., Wang, S.: GraphSmote: Imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining. p. 833–841. WSDM 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3437963.3441720

  51. Zhao, T., Liu, G., Wang, D., Yu, W., Jiang, M.: Learning from counterfactual links for link prediction. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 26911–26926. PMLR, 17–23 July 2022. https://proceedings.mlr.press/v162/zhao22e.html

  52. Zhu, Z., Zhang, Z., Xhonneux, L.P., Tang, J.: Neural bellman-ford networks: a general graph neural network framework for link prediction. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 29476–29490. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf

Download references

Acknowledgements

National Natural Science Foundation of China, Grant/Award Number: 61402220; The Philosophy and Social Science Foundation of Hunan Province, Grant/Award Number: 16YBA323; Natural Science Foundation of Hunan Province, Grant/Award Number: 2020JJ4525,2022JJ30495; Scientific Research Fund of Hunan Provincial Education Department, Grant/Award Number: 18B279,19A439,22A0316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, L., Liu, Y., Ouyang, C. (2023). Causal Inference-Based Debiasing Framework for Knowledge Graph Completion. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47240-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47239-8

  • Online ISBN: 978-3-031-47240-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics