Skip to main content

Body Fat Estimation from Surface Meshes Using Graph Neural Networks

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Abstract

Body fat volume and distribution can be a strong indication for a person’s overall health and the risk for developing diseases like type 2 diabetes and cardiovascular diseases. Frequently used measures for fat estimation are the body mass index (BMI), waist circumference, or the waist-hip-ratio. However, those are rather imprecise measures that do not allow for a discrimination between different types of fat or between fat and muscle tissue. The estimation of visceral (VAT) and abdominal subcutaneous (ASAT) adipose tissue volume has shown to be a more accurate measure for named risk factors. In this work, we show that triangulated body surface meshes can be used to accurately predict VAT and ASAT volumes using graph neural networks. Our methods achieve high performance while reducing training time and required resources compared to state-of-the-art convolutional neural networks in this area. We furthermore envision this method to be applicable to cheaper and easily accessible medical surface scans instead of expensive medical images.

T. T. Mueller and S. Zhou—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshin, A., Reitsma, M.B., Murray, C.J.: Health effects of overweight and obesity in 195 countries. N. Engl. J. Med. 377(15), 1496–1497 (2017)

    Google Scholar 

  2. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.: Graph-based deep learning for medical diagnosis and analysis: past, present and future. Sensors 21(14), 4758 (2021)

    Article  Google Scholar 

  3. Anderson, M.R., et al.: Body mass index and risk for intubation or death in SARS-COV-2 infection: a retrospective cohort study. Ann. Intern. Med. 173(10), 782–790 (2020)

    Article  Google Scholar 

  4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(5), 698–700 (1987). https://doi.org/10.1109/TPAMI.1987.4767965

  5. Azcona, E.A., et al.: Interpretation of brain morphology in association to Alzheimer’s disease dementia classification using graph convolutional networks on triangulated meshes. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 95–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_8

    Chapter  Google Scholar 

  6. Baioumi, A.Y.A.A.: Comparing measures of obesity: waist circumference, waist-hip, and waist-height ratios. In: Nutrition in the Prevention and Treatment of Abdominal Obesity, pp. 29–40. Elsevier (2019)

    Google Scholar 

  7. Bazzocchi, A., Filonzi, G., Ponti, F., Albisinni, U., Guglielmi, G., Battista, G.: Ultrasound: which role in body composition? Eur. J. Radiol. 85(8), 1469–1480 (2016)

    Article  Google Scholar 

  8. Bergman, R.N., et al.: Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity 14(2S), 16S (2006)

    Google Scholar 

  9. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5833–5848 (2022)

    Google Scholar 

  10. Bonner, S., et al.: A review of biomedical datasets relating to drug discovery: a knowledge graph perspective. Briefings Bioinform. 23(6), bbac404 (2022)

    Google Scholar 

  11. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  12. Calle, E.E., Rodriguez, C., Walker-Thurmond, K., Thun, M.J.: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of us adults. N. Engl. J. Med. 348(17), 1625–1638 (2003)

    Article  Google Scholar 

  13. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266 (2019)

    Google Scholar 

  14. Ding, K., et al.: Graph convolutional networks for multi-modality medical imaging: Methods, architectures, and clinical applications. arXiv:2202.08916 (2022)

  15. Direk, K., et al.: The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women. BMC Cardiovasc. Disord. 13, 1–13 (2013)

    Article  Google Scholar 

  16. Euler, L.: De summis serierum reciprocarum. Commentarii academiae scientiarum Petropolitanae, pp. 123–134 (1740)

    Google Scholar 

  17. Fan, Z., Chiong, R., Hu, Z., Keivanian, F., Chiong, F.: Body fat prediction through feature extraction based on anthropometric and laboratory measurements. PLoS ONE 17(2), e0263333 (2022)

    Article  Google Scholar 

  18. Geethanath, S., Vaughan, J.T., Jr.: Accessible magnetic resonance imaging: a review. J. Magn. Reson. Imaging 49(7), e65–e77 (2019)

    Article  Google Scholar 

  19. Gopinath, Karthik, Desrosiers, Christian, Lombaert, Herve: Adaptive graph convolution pooling for brain surface analysis. In: Chung, Albert C. S.., Gee, James C.., Yushkevich, Paul A.., Bao, Siqi (eds.) IPMI 2019. LNCS, vol. 11492, pp. 86–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_7

    Chapter  Google Scholar 

  20. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of 2005 IEEE International Joint Conference on neural networks. vol. 2(2005), pp. 729–734 (2005)

    Google Scholar 

  21. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems. vol. 30 (2017)

    Google Scholar 

  22. Harty, P.S., et al.: Novel body fat estimation using machine learning and 3-dimensional optical imaging. Eur. J. Clin. Nutr. 74(5), 842–845 (2020)

    Article  Google Scholar 

  23. Hemke, R., Buckless, C.G., Tsao, A., Wang, B., Torriani, M.: Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skeletal Radiol. 49, 387–395 (2020)

    Article  Google Scholar 

  24. Huang, Q., He, H., Singh, A., Lim, S.N., Benson, A.R.: Combining label propagation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993 (2020)

  25. Jacobs, E.J., et al.: Waist circumference and all-cause mortality in a large us cohort. Arch. Intern. Med. 170(15), 1293–1301 (2010)

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)

  28. Kivimäki, M., et al.: Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2(6), e277–e285 (2017)

    Article  Google Scholar 

  29. Klarqvist, M.D., et al.: Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk. npj Digital Med. 5(1), 105 (2022)

    Google Scholar 

  30. Kong, K., et al.: Flag: Adversarial data augmentation for graph neural networks. arXiv preprint arXiv:2010.09891 (2020)

  31. Küstner, T., et al.: Fully automated and standardized segmentation of adipose tissue compartments via deep learning in 3D whole-body MRI of epidemiologic cohort studies. Radiol. Artif. Intell. 2(6), e200010 (2020)

    Google Scholar 

  32. Larsson, S.C., Bäck, M., Rees, J.M., Mason, A.M., Burgess, S.: Body mass index and body composition in relation to 14 cardiovascular conditions in UK biobank: a mendelian randomization study. Eur. Heart J. 41(2), 221–226 (2020)

    Article  Google Scholar 

  33. Lavdas, I., Glocker, B., Rueckert, D., Taylor, S., Aboagye, E., Rockall, A.: Machine learning in whole-body MRI: experiences and challenges from an applied study using multicentre data. Clin. Radiol. 74(5), 346–356 (2019)

    Article  Google Scholar 

  34. Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9267–9276 (2019)

    Google Scholar 

  35. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

    Google Scholar 

  36. Linder, N., et al.: Estimation of abdominal subcutaneous fat volume of obese adults from single-slice MRI data - regression coefficients and agreement. Eur. J. Radiol. 130, 109184 (2020). https://doi.org/10.1016/j.ejrad.2020.109184, https://www.sciencedirect.com/science/article/pii/S0720048X20303739

  37. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353 (1998)

    Google Scholar 

  38. Lu, X., Ma, C., Ni, B., Yang, X., Reid, I., Yang, M.H.: Deep regression tracking with shrinkage loss. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 353–369 (2018)

    Google Scholar 

  39. Lu, Y., et al.: Sex-specific equations to estimate body composition: derivation and validation of diagnostic prediction models using UK biobank. Clin. Nutr. 42(4), 511–518 (2023). https://doi.org/10.1016/j.clnu.2023.02.005, https://www.sciencedirect.com/science/article/pii/S0261561423000341

  40. Matsuzawa, Y., Nakamura, T., Shimomura, I., Kotani, K.: Visceral fat accumulation and cardiovascular disease. Obes. Res. 3(S5), 645S-647S (1995)

    Article  Google Scholar 

  41. Messina, C., et al.: Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant. Imaging Med. Surg. 10(8), 1687 (2020)

    Article  Google Scholar 

  42. Neeland, I.J., et al.: Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diab. Endocrinol. 7(9), 715–725 (2019)

    Article  Google Scholar 

  43. Nowak, S., et al.: Fully automated segmentation of connective tissue compartments for CT-based body composition analysis: a deep learning approach. Invest. Radiol. 55(6), 357–366 (2020)

    Article  Google Scholar 

  44. Petersen, S.E., et al.: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK biobank-rationale, challenges and approaches. J. Cardiovasc. Magn. Reson. 15(1), 1–10 (2013)

    Article  Google Scholar 

  45. Salehi, Y., Giannacopoulos, D.: PhysGNN: a physics-driven graph neural network based model for predicting soft tissue deformation in image-guided neurosurgery. Adv. Neural. Inf. Process. Syst. 35, 37282–37296 (2022)

    Google Scholar 

  46. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  47. Shuster, A., Patlas, M., Pinthus, J., Mourtzakis, M.: The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 85(1009), 1–10 (2012)

    Article  Google Scholar 

  48. Song, X., et al.: Comparison of various surrogate obesity indicators as predictors of cardiovascular mortality in four European populations. Eur. J. Clin. Nutr. 67(12), 1298–1302 (2013)

    Article  Google Scholar 

  49. Sudlow, C., et al.: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  50. Tian, I.Y., et al.: Predicting 3D body shape and body composition from conventional 2D photography. Med. Phys. 47(12), 6232–6245 (2020)

    Article  Google Scholar 

  51. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  52. Verma, N., Boyer, E., Verbeek, J.: FeaStNet: feature-steered graph convolutions for 3D shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598–2606 (2018)

    Google Scholar 

  53. Wang, B., Torriani, M.: Artificial intelligence in the evaluation of body composition. In: Seminars in Musculoskeletal Radiology. vol. 24, pp. 030–037. Thieme Medical Publishers (2020)

    Google Scholar 

  54. Xie, B., et al.: Accurate body composition measures from whole-body silhouettes. Med. Phys. 42(8), 4668–4677 (2015)

    Article  Google Scholar 

  55. Yi, H.C., You, Z.H., Huang, D.S., Kwoh, C.K.: Graph representation learning in bioinformatics: trends, methods and applications. Briefings Bioinform. 23(1), bbab340 (2022)

    Google Scholar 

  56. Zhang, X.M., Liang, L., Liu, L., Tang, M.J.: Graph neural networks and their current applications in bioinformatics. Front. Genet. 12, 690049 (2021)

    Article  Google Scholar 

  57. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: A modern library for 3D data processing. arXiv:1801.09847 (2018)

Download references

Acknowledgements

TM and SS were supported by the ERC (Deep4MI - 884622). This work has been conducted under the UK Biobank application 87802. SS has furthermore been supported by BMBF and the NextGenerationEU of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara T. Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mueller, T.T. et al. (2023). Body Fat Estimation from Surface Meshes Using Graph Neural Networks. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics