Skip to main content

Membrane Based Technologies for Industrial Waste Management

  • Chapter
  • First Online:
Green Technologies for Industrial Waste Remediation

Abstract

Numerous methodologies, encompassing adsorption, oxidation, and biological techniques, have been proposed and experimented with. Among these methods, membrane-based technology, stands out as an exceptionally effective approach, captivating researchers in the battle against pollution due to its promising attributes. These include cost-effectiveness at the outset, ease of scalability, and environmentally friendly production with minimal emission of noxious compounds. In this chapter, we conduct an assessment of the efficacy of membrane technology in eliminating diverse contaminants from both industrial and agricultural effluents. Our aim is to highlight the pivotal role played by this technology. This chapter will comprehensively expound upon the diverse approaches involving membrane-based technology, elucidating their mechanism, and their applications in environmental remediation. These applications span from heavy metal removal, dye degradation, and pharmaceutical waste cleansing to the elimination of organic contaminants, and even encompass gas sensing capabilities. This chapter focuses on the latest developments in membrane technology for the treatment of industrial and agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah N et al (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    Article  CAS  Google Scholar 

  • Abdullah N et al (2021) Removal of lead (II) by nano filtration-ranged thin film nanocomposite between hydraulic-driven and osmotic-driven membrane process. J Taiwan Inst Chem Eng 000:1–16

    Google Scholar 

  • Ahmad A, Alshammari MB (2023) Nanofiltration membrane for water purification. Springer Nature

    Google Scholar 

  • Amasuomo E, Baird J (2016) The concept of waste and waste management. J Mgmt Sustain 6:88

    Article  Google Scholar 

  • Ang WL, Mohammad AW, Hilal N, Leo CP (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18. https://doi.org/10.1016/j.desal.2014.03.008

    Article  CAS  Google Scholar 

  • Arana Juve J-M, Christensen FMS, Wang Y, Wei Z (2022) Electrodialysis for metal removal and recovery: A review. Chem Eng J 435:134857

    Article  CAS  Google Scholar 

  • Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D (2019) ScienceDirect membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J Environ Sci 82:57–69

    Article  CAS  Google Scholar 

  • Asha AB, Chen Y, Narain R (2022) Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals. Chem Soc Rev 50:11668–11683

    Article  Google Scholar 

  • Das A, Banerjee M, Bar N, Das SK (2019) Adsorptive removal of Cr(VI) from aqueous solution: Kinetic, isotherm, thermodynamics, toxicity, scale-up design, and GA modeling. SN Appl Sci 1(7)

    Google Scholar 

  • Esmaeeli A, Sarrafzadeh M-H (2023) Reducing freshwater consumption in pulp and paper industries using pinch analysis and mathematical optimization. J Water Process Eng 53:103646

    Article  Google Scholar 

  • Esmaeeli A, Sarrafzadeh M-H, Zeighami S, Kalantar M, Bariki SG, Fallahi A, Asgharnejad H, Ghaffari S-B (2023) A comprehensive review on pulp and paper industries wastewater treatment advances. Ind Eng Chem Res 62(21):8119–8145

    Article  CAS  Google Scholar 

  • Fatima S et al (2021) Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment. Chem Eng J 415(January):128395

    Google Scholar 

  • Fazal S, Zhang B, Zhong Z, Gao L, Chen X (2015) Industrial wastewater treatment by using MBR (membrane bioreactor) review study. J Environ Prot 6(6):584–598

    Article  CAS  Google Scholar 

  • Garnier C, Guiga W, Lameloise M-L, Fargues C (2023) Water reuse in the food processing industries: A review on pressure-driven membrane processes as reconditioning treatments. J Food Eng 344:111397

    Article  CAS  Google Scholar 

  • Gonçalves J, Díaz I, Torres-Franco A, Rodríguez E, Da Silva PG, Mesquita JR, Muñoz R, Garcia-Encina PA (2023) Microbial contamination of environmental waters and wastewater: detection methods and treatment technologies. Mod Approaches Waste Bioremediation:461–483

    Google Scholar 

  • Haaz E, Fozer D, Nagy T, Valentinyi N, Andre A, Matyasi J, Balla J, Mizsey P, Toth AJ (2019) Vacuum evaporation and reverse osmosis treatment of process wastewaters containing surfactant material: COD reduction and water reuse. Clean Technol Environ Policy 21(4):861–870

    Article  CAS  Google Scholar 

  • Jhaveri JH, Murthy Z (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154

    Article  CAS  Google Scholar 

  • Kalra A, Gupta A (2023) Microbiological treatment of distillery wastewater focusing on colorant decolorization and resource recovery: a review. Rev Environ Sci Bio/Technol 22(1):175–204

    Article  CAS  Google Scholar 

  • Khorshidi B, Hosseini SA, Ma G et al (2019) Novel nanocomposite polyethersulfone-antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties. Polymer 163:48–56

    Article  CAS  Google Scholar 

  • Kosseva M, Webb C (2020) Food Industry Wastes. Academic Press

    Google Scholar 

  • Kramer F, Shang R, Scherrenberg S, Rietveld L, Heijman S (2019) Quantifying defects in ceramic tight ultra- and nanofiltration membranes and investigating their robustness. Sep Purif Technol 219:159–168

    Article  CAS  Google Scholar 

  • Lakhotia SR, Mukhopadhyay M, Kumari P (2019) Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (N.F.) membrane for water treatment. Sep Purif Technol 211:98–107

    Article  CAS  Google Scholar 

  • Liu M, Turcheniuk K, Fu W et al (2020) Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes. Nano Energy 71:104627

    Article  CAS  Google Scholar 

  • Liu XS, Su XM, Tian SJ, Li Y, Yuan RF (2021) Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant. Front Environ Sci Eng 15:12

    Article  Google Scholar 

  • Manaf O, Anjana K, Prasanth R et al (2019) ZnO decorated anti-bacterial electrospun ABS nanocomposite membrane for oil-water separation. Mater Lett 25:126626

    Article  Google Scholar 

  • Masmoudi G, Ellouze E, Ben Amar R (2015) Hybrid coagulation/membrane process treatment applied to the treatment of industrial dyeing effluent. Desalin Water Treat 57(15):6781–6791

    Article  Google Scholar 

  • Masood Z, Ikhlaq A, Rizvi OS, Aziz HA, Kazmi M, Qi F (2023) A novel hybrid treatment for pharmaceutical wastewater implying electroflocculation, catalytic ozonation with Ni-Co Zeolite 5A° catalyst followed by ceramic membrane filtration. J Water Process Eng 51:103423

    Article  Google Scholar 

  • Masood Z, Ikhlaq A, Abdul Aziz H, Rizvi OS, Kazmi M, Qi F (2022) A novel hybrid treatment for pharmaceutical wastewater implying electroflocculation, catalytic ozonation with Ni-Co Zeolite 5aº catalyst followed by ceramic membrane filtration. SSRN Electronic Journal

    Google Scholar 

  • Modia A, Bellarea J (2020) Efficient removal of 2,4-dichlorophenol from contaminated water and alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite hollow fiber membranes. J Water Process Eng 33:101113

    Article  Google Scholar 

  • Mustafa G, Wyns K, Buekenhoudt A, Meynen V (2016) Antifouling grafting of ceramic membranes validated in a variety of challenging wastewaters. Water Res 104:242–253

    Article  CAS  Google Scholar 

  • Nelson CF (1912) Studies on osmosis

    Google Scholar 

  • Patel K, Patel N, Vaghamshi N, Shah K, Duggirala SM, Dudhagara P (2021) Trends and strategies in the effluent treatment of pulp and paper industries: A review highlighting reactor options. Curr Res Microb Sci 2:100077

    CAS  Google Scholar 

  • Samaei SM, Gato-Trinidad S, Altaee A (2018) The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Sep Purif Technol 200:198–220

    Article  CAS  Google Scholar 

  • Sathya K, Nagarajan K, Carlin Geor Malar G, Rajalakshmi S, Raja Lakshmi P (2022) A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. App Water Sci 12(4):70

    Google Scholar 

  • Shah MP (2023) Bio-nano filtration in industrial effluent treatment. CRC Press

    Book  Google Scholar 

  • Sharma P, Joshi H (2015) UF as Pretreatment of RO for tertiary treatment of biologically treated distillery spentwash. World Acad Sci, Eng Technol, Int J Environ, Chem, Ecol, Geol Geophys Eng 9:959–963

    Google Scholar 

  • Sharma P, Joshi H, Srivastava VC, Singh S, Lo S-L (2021) Treatment of biologically treated distillery spent wash employing electrocoagulation and reverse-osmosis treatment train. Environ Technol 43(27):4257–4268

    Article  Google Scholar 

  • Shrivastava V, Ali I, Marjub MM, Rene ER, Soto AMF (2022) Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere 293:133553

    Article  CAS  Google Scholar 

  • Singh D (2023) Advances in industrial waste management. Waste Manag Resour Recycl Dev World 2023:385–416

    Google Scholar 

  • Singh R (2014) Membrane technology and engineering for water purification. Butterworth-Heinemann.Shakak M, Rezaee R, Maleki A et al (2020). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ Technol & Innov 17:100529

    Google Scholar 

  • Singh R (2014) Membrane technology and engineering for water purification. Butterworth-Heinemann. Nelson, C. F. (1912). Studies on Osmosis

    Google Scholar 

  • Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 436:176–201

    Article  CAS  Google Scholar 

  • Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr Polym 146:148–165

    Article  CAS  Google Scholar 

  • Vashi H, Iorhemen OT, Tay JH (2018) Aerobic granulation: A recent development on the biological treatment of pulp and paper wastewater. Environ Technol Innov 9:265–274

    Article  Google Scholar 

  • Yadav A, Rajhans KP, Ramteke S, Sahu BL, Patel KS, Blazhev B (2016) Contamination of industrial waste water in Central India. J Environ Prot 7(1):72–81

    Article  CAS  Google Scholar 

  • Zhou J, Baker B, Grimsley C, Husson S (2016) Polishing step purification of high-strength wastewaters by nanofiltration and reverse osmosis. Membranes 6(1):19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Shrivastav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varma, J., Zala, U., Upadhye, V.J., Pankaj, P.P., Shrivastav, A. (2023). Membrane Based Technologies for Industrial Waste Management. In: Mathuriya, A.S., Pandit, S., Singh, N.K. (eds) Green Technologies for Industrial Waste Remediation. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-46858-2_5

Download citation

Publish with us

Policies and ethics