Skip to main content

Diabetic Retinopathy Diagnosis Leveraging Densely Connected Convolutional Networks and Explanation Technique

  • Conference paper
  • First Online:
Intelligence of Things: Technologies and Applications (ICIT 2023)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 188))

Included in the following conference series:

  • 168 Accesses

Abstract

Diabetic retinopathy is a highly prevalent disease with a global increase in its occurrence. It is characterized by progressive damage to the retina, the light-sensitive lining at the back of the eye. If left untreated, it can ultimately result in permanent blindness. However, accurately determining the stage of diabetic retinopathy is a complex task that necessitates the expertise of experienced medical professionals. In this study, renowned contemporary architectures such as DenseNet121 and InceptionV3 were adapted and modified to predict diabetic retinopathy stages on the dataset obtained from the Kaggle competition - APTOS 2019 Blindness Detection. An explanation technique was employed to localize regions of distinct lesions to facilitate predictions for ophthalmologists. The findings of this study demonstrate that DenseNet121 outperforms other models, achieving a validation classification accuracy of 83.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiello, L.P., Dcct/Edic Research Group.: Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diab. Care 37(1), 17–23 (2013). https://doi.org/10.2337/dc13-2251

  2. Tymchenko, B., Marchenko, P., Spodarets, D.: Deep learning approach to diabetic retinopathy detection. arxiv http://arxiv.org/abs/2003.02261 (2003)

  3. Sun, J.K., Jampol, L.M.: The diabetic retinopathy clinical research network (DRCR.net) and its contributions to the treatment of diabetic retinopathy. Ophthalmic Res. 62(4), 225–230 (2019). https://doi.org/10.1159/000502779

    Article  Google Scholar 

  4. Team, K.: Keras documentation: DenseNet. https://keras.io/api/applications/densenet/

  5. Team, K.: Keras documentation: InceptionV3. https://keras.io/api/applications/inceptionv3/

  6. Dalvi, P.P., Edla, D.R., Purushothama, B.R.: Diagnosis of coronavirus disease from chest x-ray images using DenseNet-169 architecture. SN Comput. Sci. 4(3), 214 (2023). https://doi.org/10.1007/s42979-022-01627-7

    Article  Google Scholar 

  7. Miserlis, D., et al.: Benchmarking EfficientNetB7, InceptionResNetV2, InceptionV3, and xception artificial neural networks applications for aortic pathologies analysis. J. Vasc. Surg. 77(6), e345 (2023). https://doi.org/10.1016/j.jvs.2023.03.475

    Article  Google Scholar 

  8. Mansour, S.E., Browning, D.J., Wong, K., Flynn, H.W., Jr., Bhavsar, A.R.: The evolving treatment of diabetic retinopathy. Clin. Ophthalmol. 14, 653–678 (2020). https://doi.org/10.2147/opth.s236637

    Article  Google Scholar 

  9. Stolte, S., Fang, R.: A survey on medical image analysis in diabetic retinopathy. Med. Image Anal. 64, 101742 (2020). https://doi.org/10.1016/j.media.2020.101742

    Article  Google Scholar 

  10. Antonetti, D.A., Silva, P.S., Stitt, A.W.: Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 17(4), 195–206 (2021). https://doi.org/10.1038/s41574-020-00451-4

    Article  Google Scholar 

  11. Grzybowski, A., Brona, P., Lim, G., Ruamviboonsuk, P., Tan, G.S.W., Abramoff, M., Ting, D.S.W.: Artificial intelligence for diabetic retinopathy screening: a review. Eye 34(3), 451–460 (2019). https://doi.org/10.1038/s41433-019-0566-0

    Article  Google Scholar 

  12. Kassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A., Deters, R.: Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1–6 (2019). ISSN: 2641–5542

    Google Scholar 

  13. Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient Intell. Humanized Comput. 12(10), 9825–9839 (2021). https://doi.org/10.1007/s12652-020-02727-z

    Article  Google Scholar 

  14. Dekhil, O., Naglah, A., Shaban, M., Ghazal, M., Taher, F., Elbaz, A.: Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–4 (2019). ISSN: 1558–2809

    Google Scholar 

  15. Kim, J.K., Jung, S., Park, J., Han, S.W.: Arrhythmia detection model using modified DenseNet for comprehensible grad-CAM visualization. Biomed. Signal Process. Control 73, 103408 (2022). https://doi.org/10.1016/j.bspc.2021.103408

    Article  Google Scholar 

  16. Kolekar, S., Gite, S., Pradhan, B., Alamri, A.: Explainable AI in scene understanding for autonomous vehicles in unstructured traffic environments on Indian roads using the inception u-net model with grad-CAM visualization. Sensors 22(24), 9677 (2022). https://doi.org/10.3390/s22249677

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization, vol. 128, no. 2, pp. 336–359 (2017). http://arxiv.org/abs/1610.02391

  19. Karthik, M.S.D.: Aptos 2019 blindness detection (2019). https://kaggle.com/competitions/aptos2019-blindness-detection

  20. Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Huynh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, N.H., Nguyen, H.T. (2023). Diabetic Retinopathy Diagnosis Leveraging Densely Connected Convolutional Networks and Explanation Technique. In: Dao, NN., Thinh, T.N., Nguyen, N.T. (eds) Intelligence of Things: Technologies and Applications. ICIT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-46749-3_11

Download citation

Publish with us

Policies and ethics