Skip to main content

Multiple Attribute Decision Making in Ranking the Criteria in Health (with Certain and Uncertain Data)

  • Chapter
  • First Online:
Decision Making in Healthcare Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 513))

  • 156 Accesses

Abstract

Multi Attribute Decision Making techniques are used to evaluate the performance of the healthcare system with several attributes and sub-attributes. By using MADM, we can identify the best solutions to improve the performance of the healthcare system. This method allows us to compare and rank various factors such as the quality of medical services, access to treatment, healthcare costs, and so on. Given the breadth and complexity of the healthcare system, evaluating its performance based on a single attribute is usually not sufficient. For example, we can refer to the issue of access to treatment. In this case, we can use attributes such as the distance between the hospital and the place of residence, the number of hospital beds, and the number of specialist physicians to evaluate it. In short, MADM can be useful in improving the performance of the healthcare system and achieving health goals. Using this method, one can easily identify the necessary attributes and propose appropriate solutions to improve them. In this section, we intend to use some MADM methods to rank the performance evaluation attributes of the smart healthcare management system. The smart healthcare system refers to a set of technologies and information systems that are designed and implemented to improve the performance of the healthcare system and promote public health. This system is built based on wireless communications, social networks, sensors, robots, artificial intelligence, cloud, and smart health data. Using the smart healthcare system, health resources can be used more effectively, efficiently, and beneficially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Weighted Aggregate Sum Product Assessment.

References

  1. Abbasbandy, S., Allahviranloo, T.A.: Numerical solutions of fuzzy differential equations by Taylor method. Comput. Methods Appl. Math. 2(2), 113–124 (2002)

    Article  MathSciNet  Google Scholar 

  2. AlKhalifa, S.H., Althunibat, A.: Smart healthcare: reviewing cybersecurity challenges and approaches. Healthc. Inform. Res. 26(1), 7–15 (2020)

    Google Scholar 

  3. Abbasi, F., Allahviranloo, T.: Conception and implementation of a new data-driven fuzzy method for reliability and safety analysis. New Math. Nat. Comput. 16(02), 339–361 (2020). https://doi.org/10.1142/s1793005720500210

    Article  Google Scholar 

  4. Abbasi, F., Allahviranloo, T.: The fuzzy arithmetic operations of transmission average on Pseudo-Hexagonal fuzzy numbers and its application in fuzzy system reliability analysis. Fuzzy Inf. Eng. 13(1), 58–78 (2021). https://doi.org/10.1080/16168658.2021.1915449

    Article  Google Scholar 

  5. Abbasi, F., Allahviranloo, T.: Realistic solution of fuzzy critical path problems, case study: the airport’s cargo ground operation systems. Granul. Comput. 8(3), 617–632 (2022). https://doi.org/10.1007/s41066-022-00347-w

    Article  Google Scholar 

  6. Akram, M., Shahzadi, S., Shah, S.M.U., Allahviranloo, T.: A fully Fermatean fuzzy multi-objective transportation model using an extended DEA technique. Granul. Comput. (2023). https://doi.org/10.1007/s41066-023-00399-6

    Article  Google Scholar 

  7. Allahviranloo, T., Abbasi, F.: A new estimation of failure analysis in fuzzy environment, case study: the electrical model failure for the football stadium. New Math. Nat. Comput. 18(03), 791–817 (2022). https://doi.org/10.1142/s1793005722500387

    Article  Google Scholar 

  8. Allahviranloo, T., Abbasbandy, S., Rouhparvar, H.: The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method. Appl. Soft Comput. 11(2), 2186–2192 (2011)

    Article  Google Scholar 

  9. Allahviranloo, T., Ezadi, S.: Z-advanced numbers processes. Inf. Sci. 480, 130–143 (2019)

    Article  MathSciNet  Google Scholar 

  10. Allahviranloo, T., Gouyandeh, Z., Armand, A.: A full fuzzy method for solving differential equation based on Taylor expansion. J. Intell. Fuzzy Syst. 29(3), 1039–1055 (2015)

    Article  MathSciNet  Google Scholar 

  11. Allahviranloo, T., Lotfi, F.H., Kiasari, M.K., Khezerloo, M.: On the fuzzy solution of LR fuzzy linear systems. Appl. Math. Model. 37(3), 1170–1176 (2013)

    Article  MathSciNet  Google Scholar 

  12. Allahviranloo, T., Afshar Kermani, M.: Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iran. J. Fuzzy Syst. 7(3), 33–50 (2010)

    MathSciNet  Google Scholar 

  13. Amirteimoori, A., Allahviranloo, T., Kordrostami, S., Bagheri, S.F.: Improving decision-making units in performance analysis methods: a data envelopment analysis approach. Math. Sci. (2023). https://doi.org/10.1007/s40096-023-00512-5

    Article  Google Scholar 

  14. Amirteimoori, A., Allahviranloo, T., Zadmirzaei, M.: Scale elasticity and technical efficiency analysis in the European forest sector: a stochastic value-based approach. Eur. J. Forest Res. (2023). https://doi.org/10.1007/s10342-023-01589-2

    Article  Google Scholar 

  15. Amirteimoori, A., Allahviranloo, T., Zadmirzaei, M., Hasanzadeh, F.: On the environmental performance analysis: a combined fuzzy data envelopment analysis and artificial intelligence algorithms. Expert Syst. Appl. 224, 119953 (2023). https://doi.org/10.1016/j.eswa.2023.119953

    Article  Google Scholar 

  16. Banker, R.D., Amirteimoori, A., Allahviranloo, T., Sinha, R.P.: Performance analysis and managerial ability in the general insurance market: a study of India and Iran. Inf. Technol. Manage. (2023). https://doi.org/10.1007/s10799-023-00405-y

    Article  Google Scholar 

  17. Bell, D.E.: Decision Making: Descriptive, Normative, and Prescriptive Interactions. Cambridge University Press (2017)

    Google Scholar 

  18. Chen, X., Ren, Z., Guo, S.: A fuzzy MADM approach for ranking health criteria. Expert Syst. Appl. 42(4), 2355–2363 (2015)

    Google Scholar 

  19. Chen, Y., Fan, Z., Zhu, J.: Multi-criteria decision-making with incomplete preference information: a review. Omega 104, 102387 (2021)

    Google Scholar 

  20. Chehlabi, M., Allahviranloo, T.: Concreted solutions to fuzzy linear fractional differential equations. Appl. Soft Comput. 44, 108–116 (2016)

    Article  Google Scholar 

  21. Dubossarsky, E., Wilder, B., Martin, T.: Uncertainty-aware self-supervised learning for medical image segmentation. Med. Image Anal. 72, 102126 (2021)

    Google Scholar 

  22. Ishizaka, A., Nemery, P.: Multi-Criteria Decision Analysis: Methods and Software. John Wiley & Sons (2013)

    Book  Google Scholar 

  23. Jafarnejad, A., Soufi, M., Bayati, A.: Prioritizing critical barriers of computerized maintenance management system (CMMS) by fuzzy multi attribute decision making (F-MADM)(Using LFPP). Kuwait Chapter Arab. J. Bus. Manag. Rev. 4(3), 11 (2014)

    Article  Google Scholar 

  24. Jones, J., Hunter, D., Considine, J.: Application of the Delphi technique in healthcare maintenance. Eng. Manag. J. 26(4), 31–39 (2014)

    Google Scholar 

  25. Kahraman, C., Oztaysi, B., Kaya, Ä°: A comprehensive review of multi-criteria decision-making methods with applications in engineering. J. Clean. Prod. 276, 124202 (2020)

    Google Scholar 

  26. Koulinas, G.K., Demesouka, O.E., Bougelis, G.G., Koulouriotis, D.E.: Risk prioritization in a natural gas compressor station construction project using the analytical hierarchy process. Sustainability 14(20), 13172 (2022)

    Article  Google Scholar 

  27. Li, D., Deng, Y., Zhou, D.: An integrated MADM approach based on interval type-2 fuzzy sets for medical equipment selection. Knowl.-Based Syst. 108, 116–127 (2016)

    Google Scholar 

  28. Liao, Y., Gao, L., Chen, X.: Improving the quality of uncertain data for effective decision making: a probabilistic approach. Inf. Sci. 56(3), 186–202 (2021)

    Google Scholar 

  29. Lin, R., Xu, Y.: A hybrid decision-making approach for multi-criteria decision-making problems based on 2-tuple linguistic information. Inf. Fusion 56, 1–11 (2020)

    Google Scholar 

  30. Liu, Y., Zhang, Y.: Multi-criteria decision-making methods for assessing the sustainability of urban development. J. Clean. Prod. 341, 130727 (2022)

    Google Scholar 

  31. Linstone, H.A., Turoff, M. (Eds.).: The Delphi method: techniques and applications. Addison-Wesley (2011)

    Google Scholar 

  32. Lu, Y., Chen, J., Hao, Q., et al.: Handling uncertain data in recommender systems: a review. Inf. Process. Manag. 58(1), 102437 (2021)

    Google Scholar 

  33. Mahmoodirad, A., Allahviranloo, T., Niroomand, S.: A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft. Comput. 23(12), 4521–4530 (2019)

    Article  Google Scholar 

  34. Moloudzadeh, S., Allahviranloo, T., Darabi, P.: A new method for solving an arbitrary fully fuzzy linear system. Soft. Comput. 17(9), 1725–1731 (2013)

    Article  Google Scholar 

  35. Ngan, T.N., Al-Ani, A.: A novel integrated fuzzy MCDM model for supplier selection with sustainability criteria. J. Clean. Prod. 279, 123821 (2021)

    Google Scholar 

  36. Rahmani, A., Hosseinzadeh Lotfi, F., Rostamy-Malkhalifeh, M., Allahviranloo, T.: A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution. Adv. Fuzzy Syst. 2016 (2016)

    Google Scholar 

  37. Safari, H., Soufi, M.: Select a hypermarket location based on fuzzy multi criteria decision making (F-MCDM) techniques (hybrid of F-Delphi, F-Ahp, F-Llsm and F-Promethee). Kuwait Chap. Arab. J. Bus. Manag. Rev. 4(1), 76–95 (2014)

    Article  Google Scholar 

  38. Safari, H., Soufi, M.: Prioritize barriers of E-Factories in Iran’s industries with hybrid multi criteria decision. Indian J. Fundam. Appl. Life Sci. 5(1), 1329–1344 (2015)

    Google Scholar 

  39. Seyed-Hosseini, S.M., Amiri, M.: A multi-criteria decision-making approach for supplier selection using a new hybrid method based on interval type-2 fuzzy sets. J. Clean. Prod. 254, 120146 (2020)

    Google Scholar 

  40. Wu, Y., Lu, Y., Liu, Y.: A fuzzy clustering approach for uncertain data in wireless sensor networks. IEEE Access 9, 48717–48729 (2021)

    Google Scholar 

  41. Yeung, M.S., Lapinsky, S.E., Granton, J.T.: Critical care medicine and technology: the future is now. Crit. Care 23(1), 342 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Soufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soufi, M. (2024). Multiple Attribute Decision Making in Ranking the Criteria in Health (with Certain and Uncertain Data). In: Allahviranloo, T., Hosseinzadeh Lotfi, F., Moghaddas, Z., Vaez-Ghasemi, M. (eds) Decision Making in Healthcare Systems. Studies in Systems, Decision and Control, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-031-46735-6_5

Download citation

Publish with us

Policies and ethics