Skip to main content

Drugs Resistance Analysis from Scarce Health Records via Multi-task Graph Representation

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14178))

Included in the following conference series:

  • 222 Accesses

Abstract

Clinicians prescribe antibiotics by looking at the patient’s health record with an experienced eye. However, the therapy might be rendered futile if the patient has drug resistance. Determining drug resistance requires time-consuming laboratory-level testing while applying clinicians’ heuristics in an automated way is difficult due to the categorical or binary medical events that constitute health records. In this paper, we propose a novel framework for rapid clinical intervention by viewing health records as graphs whose nodes are mapped from medical events and edges as correspondence between events in given a time window. A novel graph-based model is then proposed to extract informative features and yield automated drug resistance analysis from those high-dimensional and scarce graphs. The proposed method integrates multi-task learning into a common feature extracting graph encoder for simultaneous analyses of multiple drugs as well as stabilizing learning. On a massive dataset comprising over 110,000 patients with urinary tract infections, we verify the proposed method is capable of attaining superior performance on the drug resistance prediction problem. Furthermore, automated drug recommendations resemblant to laboratory-level testing can also be made based on the model resistance analysis.

H. Shu and P. Gao—Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attenberg, J., Weinberger, K., Dasgupta, A., Smola, A., Zinkevich, M.: Collaborative email-spam filtering with the hashing trick. In: CEAS (2009)

    Google Scholar 

  2. Bertsimas, D., Van Parys, B.: Sparse high-dimensional regression: exact scalable algorithms and phase transitions. Ann. Stat. 48(1), 300–323 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? CoRR abs/2105.14491 (2021)

    Google Scholar 

  4. Chen, Z., Badrinarayanan, V., Lee, C., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: Proceedings of the 35th International Conference on Machine Learning, ICML (2018)

    Google Scholar 

  5. Diehl, F.: Edge contraction pooling for graph neural networks. CoRR abs/1905.10990 (2019)

    Google Scholar 

  6. Ferrer, R., et al.: Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 42(8), 1749–1755 (2014)

    Article  Google Scholar 

  7. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: NDDR-CNN: layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction. In: CVPR, pp. 3205–3214 (2019)

    Google Scholar 

  8. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML, pp. 1263–1272 (2017)

    Google Scholar 

  9. Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_17

    Chapter  Google Scholar 

  10. Guo, P., Lee, C., Ulbricht, D.: Learning to branch for multi-task learning. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 3854–3863. PMLR (2020)

    Google Scholar 

  11. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, pp. 1024–1034 (2017)

    Google Scholar 

  12. Ikram, R., Psutka, R., Carter, A., Priest, P.: An outbreak of multi-drug resistant escherichia coli urinary tract infection in an elderly population: a case-control study of risk factors. BMC Infect. Dis. 15(1), 1–7 (2015)

    Article  Google Scholar 

  13. Kanjilal, S., Oberst, M., Boominathan, S., Zhou, H., Hooper, D.C., Sontag, D.A.: A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Science Transl. Med. 12 (2020)

    Google Scholar 

  14. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2018)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  16. Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2017)

    Google Scholar 

  17. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 3734–3743. PMLR (2019)

    Google Scholar 

  18. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  19. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: CVPR, pp. 1871–1880 (2019)

    Google Scholar 

  20. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with eigenpooling. In: ACM SIGKDD, pp. 723–731 (2019)

    Google Scholar 

  21. Michael, O., Soorajnath, B., Helen, Z., Sanjat, K., Sontag, D.: AMR-UTI: antimicrobial resistance in urinary tract infections (version 1.0.0). PhysioNet (2020)

    Google Scholar 

  22. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 3994–4003. IEEE Computer Society (2016)

    Google Scholar 

  23. Reller, L.B., Weinstein, M., Jorgensen, J.H., Ferraro, M.J.: Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49(11), 1749–1755 (2009)

    Article  Google Scholar 

  24. Seger, C.: An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing (2018)

    Google Scholar 

  25. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: NeurIPS, pp. 525–536 (2018)

    Google Scholar 

  26. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Tulyakov, S., Farooq, F., Mansukhani, P., Govindaraju, V.: Symmetric hash functions for secure fingerprint biometric systems. Pattern Recogn. Lett. 28(16), 2427–2436 (2007)

    Article  Google Scholar 

  28. Vandenhende, S., Georgoulis, S., Gansbeke, W.V., Proesmans, M., Dai, D., Gool, L.V.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2022)

    Google Scholar 

  29. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  30. Ventola, C.L.: The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 40(4), 277 (2015)

    Google Scholar 

  31. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. In: ICML, pp. 6861–6871 (2019)

    Google Scholar 

  32. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2019)

    Article  MathSciNet  Google Scholar 

  33. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

  34. Yelin, I., et al.: Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 25(7), 1143–1152 (2019)

    Article  Google Scholar 

  35. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS, pp. 4805–4815 (2018)

    Google Scholar 

  36. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research Number JP21H03446, NICT 03501, JST-AIP JPMJCR21U4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shu, H., Gao, P., Zhu, L., Chen, Z., Matsubara, Y., Sakurai, Y. (2023). Drugs Resistance Analysis from Scarce Health Records via Multi-task Graph Representation. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14178. Springer, Cham. https://doi.org/10.1007/978-3-031-46671-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46671-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46670-0

  • Online ISBN: 978-3-031-46671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics