Skip to main content

A Review in Deep Learning-Based Thyroid Cancer Detection Techniques Using Ultrasound Images

  • Conference paper
  • First Online:
Intelligence of Things: Technologies and Applications (ICIT 2023)

Abstract

Early detection of thyroid cancer nodules will lead to the most specific and effective treatments, significantly reducing morbidity and mortality. The application of ultrasound imaging according to the traditional method has been widely used in the early detection of thyroid nodules. However, applying traditional methods is time-consuming, costly, and even ineffective because of the direct intervention of machines in the human body. Therefore, the development and application of deep learning methods in the diagnostic process are of great significance. Deep learning methods have improved the quality of the diagnostic process most objectively. This review evaluated many aspects of deep learning methods, including CNNs, GANs, and ThyNet. The results show that the preferred method has 94% accuracy, 93% sensitivity, and up to 95% specificity. It is the CascadeMaskR-CNN method. In addition, the methods mentioned have relatively good metrics and high learning properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbad Ur Rehman, H., Lin, C.Y., Mushtaq, Z., Su, S.F.: Performance analysis of machine learning algorithms for thyroid disease. Arab. J. Sci. Eng., 1–13 (2021)

    Google Scholar 

  2. Anari, S., Tataei Sarshar, N., Mahjoori, N., Dorosti, S., Rezaie, A.: Review of deep learning approaches for thyroid cancer diagnosis. Mathe. Probl. Eng. 2022 (2022)

    Google Scholar 

  3. Bačanin Džakula, N., et al.: Convolutional neural network layers and architectures. In: Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research, pp. 445–451. Singidunum University (2019)

    Google Scholar 

  4. Baloch, Z.W., Fleisher, S., LiVolsi, V.A., Gupta, P.K.: Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn. Cytopathol. 26(1), 41–44 (2002)

    Google Scholar 

  5. Chan, W.K., et al.: Using deep convolutional neural networks for enhanced ultrasonographic image diagnosis of differentiated thyroid cancer. Biomedicines 9(12), 1771 (2021)

    Article  Google Scholar 

  6. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  7. Falk, T., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  8. Friedrich-Rust, M., et al.: Interobserver agreement of thyroid imaging reporting and data system (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS ONE 8(10), e77927 (2013)

    Article  Google Scholar 

  9. Guan, Q., et al.: Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study. Ann. Transl. Med. 7(7) (2019)

    Google Scholar 

  10. Jin, Z., et al.: Ultrasound computer-aided diagnosis (CAD) based on the thyroid imaging reporting and data system (TI-RADS) to distinguish benign from malignant thyroid nodules and the diagnostic performance of radiologists with different diagnostic experience. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, e918452-1 (2020)

    Google Scholar 

  11. Kenigsberg, J.: Thyroid cancer associated with the Chernobyl accident. In: Encyclopedia of Environmental Health, pp. 55–64 (2011)

    Google Scholar 

  12. Ko, S.Y., et al.: Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound. Head Neck 41(4), 885–891 (2019)

    Article  Google Scholar 

  13. Koushik, J.: Understanding convolutional neural networks. arXiv preprint arXiv:1605.09081 (2016)

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Lee, H., Song, J.: Introduction to convolutional neural network using Keras; an understanding from a statistician. Commun. Stat. Appl. Methods 26(6), 591–610 (2019)

    Google Scholar 

  16. Li, X., et al.: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 20(2), 193–201 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lin, J.S., Bowles, E.J.A., Williams, S.B., Morrison, C.C.: Screening for thyroid cancer: updated evidence report and systematic review for the us preventive services task force. JAMA 317(18), 1888–1903 (2017)

    Article  Google Scholar 

  18. Lin, Y.J., et al.: Deep learning fast screening approach on cytological whole slides for thyroid cancer diagnosis. Cancers 13(15), 3891 (2021)

    Article  Google Scholar 

  19. Liu, Y., Liang, J., Peng, S., Wang, W., Xiao, H.: A deep-learning model to assist thyroid nodule diagnosis and management-authors’ reply. Lancet Digit. Health 3(7), e411–e412 (2021)

    Article  Google Scholar 

  20. Lu, Y., Yang, Y., Chen, W.: Application of deep learning in the prediction of benign and malignant thyroid nodules on ultrasound images. IEEE Access 8, 221468–221480 (2020)

    Article  Google Scholar 

  21. Meier, C.A.: Role of imaging in thyroid disease. In: Diseases of the Brain, Head & Neck, Spine: Diagnostic Imaging and Interventional Techniques 40th International Diagnostic Course in Davos (IDKD) Davos, 30 March–4 April 2008, pp. 243–250 (2008)

    Google Scholar 

  22. Nguyen, L.V., Vo, N.D., Jung, J.J.: DaGzang: a synthetic data generator for cross-domain recommendation services. PeerJ Comput. Sci. 9, e1360 (2023)

    Article  Google Scholar 

  23. Noone, A.M., et al.: Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013cancer incidence and survival trends by subtype, 1992–2013. Cancer Epidemiol. Biomark. Prev. 26(4), 632–641 (2017)

    Article  Google Scholar 

  24. Olson, E., Wintheiser, G., Wolfe, K.M., Droessler, J., Silberstein, P.T.: Epidemiology of thyroid cancer: a review of the national cancer database, 2000–2013. Cureus 11(2) (2019)

    Google Scholar 

  25. Ouyang, F.S., et al.: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules. Eur. J. Radiol. 113, 251–257 (2019)

    Google Scholar 

  26. Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis, vol. 9287, pp. 188–193. SPIE (2015)

    Google Scholar 

  27. Peng, S., et al.: Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit. Health 3(4), e250–e259 (2021)

    Article  MathSciNet  Google Scholar 

  28. Połap, D.: Analysis of skin marks through the use of intelligent things. IEEE Access 7, 149355–149363 (2019)

    Article  Google Scholar 

  29. Prochazka, A., Gulati, S., Holinka, S., Smutek, D.: Classification of thyroid nodules in ultrasound images using direction-independent features extracted by two-threshold binary decomposition. Technol. Cancer Res. Treat. 18, 1533033819830748 (2019)

    Article  Google Scholar 

  30. Rocca, J.: Understanding generative adversarial networks (GANs). Medium 7, 20 (2019)

    Google Scholar 

  31. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Seeland, M., Rzanny, M., Boho, D., Wäldchen, J., Mäder, P.: Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20(1), 1–13 (2019)

    Article  Google Scholar 

  33. Shin, J.H., et al.: Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean society of thyroid radiology consensus statement and recommendations. Korean J. Radiol. 17(3), 370–395 (2016)

    Google Scholar 

  34. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA Cancer J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  35. Stewart, R., Leang, Y.J., Bhatt, C.R., Grodski, S., Serpell, J., Lee, J.C.: Quantifying the differences in surgical management of patients with definitive and indeterminate thyroid nodule cytology. Eur. J. Surg. Oncol. 46(2), 252–257 (2020)

    Article  Google Scholar 

  36. Suteau, V., Munier, M., Briet, C., Rodien, P.: Sex bias in differentiated thyroid cancer. Int. J. Mol. Sci. 22(23), 12992 (2021)

    Article  Google Scholar 

  37. Taye, M.M.: Theoretical understanding of convolutional neural network: concepts, architectures, applications, future directions. Computation 11(3), 52 (2023)

    Article  Google Scholar 

  38. Tessler, F.N., Middleton, W.D., Grant, E.G.: Thyroid imaging reporting and data system (TI-RADS): a user’s guide. Radiology 287(1), 29–36 (2018)

    Article  Google Scholar 

  39. Wang, Y., et al.: Comparison study of radiomics and deep learning-based methods for thyroid nodules classification using ultrasound images. IEEE Access 8, 52010–52017 (2020)

    Article  Google Scholar 

  40. Wu, J.: Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University. China 5(23), 495 (2017)

    Google Scholar 

  41. Yang, W., et al.: DScGANS: integrate domain knowledge in training dual-path semi-supervised conditional generative adversarial networks and S3VM for ultrasonography thyroid nodules classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 558–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_61

    Chapter  Google Scholar 

  42. Zhang, G., Berardi, V.L.: An investigation of neural networks in thyroid function diagnosis. Health Care Manag. Sci. 1, 29–37 (1998)

    Article  Google Scholar 

  43. Zhang, Q., Wang, H., Lu, H., Won, D., Yoon, S.W.: Medical image synthesis with generative adversarial networks for tissue recognition. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 199–207. IEEE (2018)

    Google Scholar 

  44. Zhu, L.C., et al.: A model to discriminate malignant from benign thyroid nodules using artificial neural network. PLoS ONE 8(12), e82211 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Vuong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, L.C., Bui Hoang, Y., Trung, N.L., Dung, B.T., Ha, TT., Nguyen, L.V. (2023). A Review in Deep Learning-Based Thyroid Cancer Detection Techniques Using Ultrasound Images. In: Dao, NN., Thinh, T.N., Nguyen, N.T. (eds) Intelligence of Things: Technologies and Applications. ICIT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-031-46573-4_2

Download citation

Publish with us

Policies and ethics