Skip to main content

Techniques to Characterize the Photoactivity of Semiconductor Materials Defining Performance in Advanced Oxidation Processes and Fuel Generation

  • Chapter
  • First Online:
Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology

Abstract

Semiconductor materials have received a renowned interest in materials science resulting from the emergence of photocatalysis. These phases possess exclusive capacity to separate the electron and hole charge carriers during a light absorption stage, which relies upon the occurrence of numerous processes involving adsorption of species, photon absorption, photoejection, charge separation, and charge transfer reactions occurring at various interfaces. Overall, this determines the photoactivity of a catalyst whence it constitutes a great challenge. Additionally, most oxidative photocatalytic reactions have been developed using powders or particles in suspension of the reaction medium, which complicates the characterization of the direct activity of the materials. Under this idea, this study critically reviews spectroscopic techniques (e.g. Raman, X-ray photoelectron spectroscopy, UV–Vis spectroscopy, Fourier-transform infrared spectroscopy, Electron paramagnetic resonance), electrochemical techniques (voltammetry, chronoamperometry, chronopotentiometry, electrochemical impedance spectroscopy, Mott-Schottky), among others, and their constitutive equations to characterize the photoactivity of semiconductor materials concerning oxidation reactions (i.e. hole involvement). Likewise, the impregnation and deposition methods for powders and particles are revisited to conduct some of the aforementioned physicochemical characterizations.

D. Palomares-Reyna1 and A. N. Gutiérrez-Lopez—these authors equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yao, Y., Gao, X., Meng, X.: Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. Int. J. Hydrog. Energy 46, 9087–9100 (2021)

    Article  CAS  Google Scholar 

  2. Fernandez-Ibanez, P., McMichael, S., Cabanillas, A.R., Alkharabsheh, S., Moranchel, A.T., Byrne, J.A.: New trends on photoelectrocatalysis (PEC): nanomaterials, wastewater treatment and hydrogen generation. Curr. Opin. Chem. Eng. 34, 100725 (2021)

    Article  Google Scholar 

  3. Carrera-Crespo, J., Fuentes-Camargo, I., Palma-Goyes, R., García-Pérez, U., Vazquez-Arenas, J., Chairez, I., Poznyak, T.: Unrevealing the effect of transparent fluorine-doped tin oxide (FTO) substrate and irradiance configuration to unmask the activity of FTO-BiVO4 heterojunction. Mater. Sci. Semicond. Process. 128, 105717 (2021)

    Article  CAS  Google Scholar 

  4. Fuentes-Camargo, I., Carrera-Crespo, J.E., Vazquez-Arenas, J., Romero-Ibarra, I., Rodríguez, J.L., Lartundo-Rojas, L., Cardoso-Martínez, J.: Pulse-plating electrodeposition of metallic Bi in an organic-free aqueous electrolyte and its conversion into BiVO4 to improve photoelectrochemical activity toward pollutant degradation under visible light. J. Phys. Chem. C 124, 1421–1428 (2019)

    Article  Google Scholar 

  5. López, R.J., Reyna, D.P., Vazquez-Arenas, J.: Unraveling the Surface Chemistry of the Heterogeneous Catalytic Decomposition of O3 for Selectivity Concerning O2 or HO• Formation, Research Topics in Bioactivity, Environment and Energy: Experimental and Theoretical Tools, pp. 289–306. Springer (2022)

    Google Scholar 

  6. García-Osorio, D., Jaimes, R., Vazquez-Arenas, J., Lara, R., Alvarez-Ramirez, J.: The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: •OH formation. J. Electrochem. Soc. 164, E3321 (2017)

    Article  Google Scholar 

  7. García-Osorio, D., Vazquez-Arenas, J., Jaimes, R.: Revisiting tractable strategies to determine the activity/inactivity of electrocatalysts towards O2/OH production. J. Electrochem. Soc. 165, J3101 (2018)

    Article  Google Scholar 

  8. Wei, N., Cui, H., Song, Q., Zhang, L., Song, X., Wang, K., Zhang, Y., Li, J., Wen, J., Tian, J.: Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl. Catal. B 198, 83–90 (2016)

    Article  CAS  Google Scholar 

  9. Camacho-Escobar, L., Palma-Goyes, R.E., Ortiz-Landeros, J., Romero-Ibarra, I., Gamba-Vásquez, O.A., Vazquez-Arenas, J.: Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method. Appl. Surf. Sci. 521, 146357 (2020)

    Article  CAS  Google Scholar 

  10. Tan, H.L., Abdi, F.F., Ng, Y.H.: Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 48, 1255–1271 (2019)

    Article  CAS  Google Scholar 

  11. Chen, X., Shen, S., Guo, L., Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  Google Scholar 

  12. Vazquez-Arenas, J.: Experimental and modeling analysis of the formation of cuprous intermediate species formed during the copper deposition on a rotating disk electrode. Electrochim. Acta 55, 3550–3559 (2010)

    Article  CAS  Google Scholar 

  13. Guzmán, G., Vazquez-Arenas, J., Ramos-Sánchez, G., Bautista-Ramírez, M., González, I.: Improved performance of LiFePO4 cathode for Li-ion batteries through percolation studies. Electrochim. Acta 247, 451–459 (2017)

    Article  Google Scholar 

  14. Meille, V.: Review on methods to deposit catalysts on structured surfaces. Appl. Catal. A 315, 1–17 (2006)

    Article  CAS  Google Scholar 

  15. Adegbite, S.A.: Coating of Catalyst Supports: Links Between Slurry Characteristics, Coating Process and Final Coating Quality. University of Surrey (2010)

    Google Scholar 

  16. Liu, Q., Ranocchiari, M., van Bokhoven, J.A.: Catalyst overcoating engineering towards high-performance electrocatalysis. Chem. Soc. Rev. 51, 188–236 (2022)

    Article  CAS  Google Scholar 

  17. Cabrera-Sierra, R., Vazquez-Arenas, J., Cardoso, S., Luna-Sánchez, R., Trejo, M., Marín-Cruz, J., Hallen, J.: Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling. Electrochim. Acta 56, 8040–8047 (2011)

    Article  CAS  Google Scholar 

  18. Cabrera-Sierra, R., Hallen, J.M., Vazquez-Arenas, J., Vázquez, G., González, I.: EIS characterization of tantalum and niobium oxide films based on a modification of the point defect model. J. Electroanal. Chem. 638, 51–58 (2010)

    Article  CAS  Google Scholar 

  19. Acevedo-Peña, P., Vazquez-Arenas, J., Cabrera-Sierra, R., Lartundo-Rojas, L., González, I.: Ti anodization in alkaline electrolyte: the relationship between transport of defects, film hydration and composition. J. Electrochem. Soc. 160, C277 (2013)

    Article  Google Scholar 

  20. Bard, A.J., Faulkner, L.R., White, H.S.: Electrochemical Methods: Fundamentals and Applications. Wiley (2022)

    Google Scholar 

  21. Palomares-Reyna, D., Carrera-Crespo, J.E., Sosa-Rodríguez, F.S., García-Pérez, U.M., Fuentes-Camargo, I., Lartundo-Rojas, L., Vazquez-Arenas, J.: Photo-electrochemical and ozonation process to degrade ciprofloxacin in synthetic municipal wastewater, using C, N-codoped TiO2 with high visible-light absorption. J. Environ. Chem. Eng. 10, 107380 (2022)

    Article  CAS  Google Scholar 

  22. Palomares-Reyna, D., Fuentes-Camargo, I., Palomino, R., Lartundo-Rojas, L., Sosa, F., Vilar, V.J.P., Vazquez-Arenas, J.: Tuning the photoelectrochemical oxidation activity of TiO2 by nitrogen and carbon doping altering oxygen vacancies for cefadroxil abatement along with O3. Chemosphere (2023) (under review)

    Google Scholar 

  23. Capilli, G., Costamagna, M., Sordello, F., Minero, C.: Synthesis, characterization and photocatalytic performance of p-type carbon nitride. Appl. Catal. B 242, 121–131 (2019)

    Article  CAS  Google Scholar 

  24. Orazem, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy, vol. 1, pp. 383–389. New Jersey (2008)

    Google Scholar 

  25. Lasia, A.: Electrochemical Impedance Spectroscopy and Its Applications. Springer (2002)

    Google Scholar 

  26. Surendra, B.: Green engineered synthesis of Ag-doped CuFe2O4: characterization, cyclic voltammetry and photocatalytic studies. J. Sci.: Adv. Mater. Devices 3, 44–50 (2018)

    Google Scholar 

  27. Song, H., Macdonald, D.D.: Photoelectrochemical impedance spectroscopy: I. Validation of the transfer function by Kramers-Kronig transformation. J. Electrochem. Soc. 138, 1408 (1991)

    Article  CAS  Google Scholar 

  28. Rajeshwar, K.: Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encycl. Electrochem. 6, 1–53 (2007)

    Google Scholar 

  29. Palomares-Reyna, D., Carrera-Crespo, J.E., Sosa-Rodríguez, F.S., Romero-Ibarra, I.C., Castañeda-Galván, A.A., Morales-García, S.S., Vazquez-Arenas, J.: Degradation of cefadroxil by photoelectrocatalytic ozonation under visible-light irradiation and single processes. J. Photochem. Photobiol. A 431, 113995 (2022)

    Article  CAS  Google Scholar 

  30. Ângelo, J., Magalhães, P., Andrade, L., Mendes, A.: Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Appl. Surf. Sci. 387, 183–189 (2016)

    Article  Google Scholar 

  31. Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., Palmisano, G.: (Photo) Catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations, Heterogeneous Photocatalysis, pp. 87–152. Elsevier (2019)

    Google Scholar 

  32. Burgess, C.: The Basics of Spectrophotometric Measurement, Techniques and Instrumentation in Analytical Chemistry. Elsevier, pp. 1–19 (2007)

    Google Scholar 

  33. Makuła, P., Pacia, M., Macyk, W.: How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. ACS Publications, pp. 6814–6817 (2018)

    Google Scholar 

  34. Thambiratnam, K., Reduan, S.A., Tiu, Z.C., Ahmad, H.: Application of Two-Dimensional Materials in Fiber Laser Systems, Nano-Optics, pp. 227–264. Elsevier (2020)

    Google Scholar 

  35. Guayaquil-Sosa, J.F., Serrano-Rosales, B., Valadés-Pelayo, P.J., de Lasa, H.: Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl. Catal. B 211, 337–348 (2017)

    Article  CAS  Google Scholar 

  36. Saravanan, R., Sacari, E., Gracia, F., Khan, M.M., Mosquera, E., Gupta, V.K.: Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)

    Article  CAS  Google Scholar 

  37. Xiong, C., Ren, Q., Chen, S., Liu, X., Jin, Z., Ding, Y.: A multifunctional Ag3PO4/Fe3O4/diatomite composites: photocatalysis, adsorption and sterilization. Mater. Today Commun. 28, 102695 (2021)

    Article  CAS  Google Scholar 

  38. Apopei, P., Catrinescu, C., Teodosiu, C., Royer, S.: Mixed-phase TiO2 photocatalysts: crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Appl. Catal. B 160, 374–382 (2014)

    Article  Google Scholar 

  39. Gahlawat, S., Singh, J., Yadav, A.K., Ingole, P.P.: Exploring Burstein-Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting. Phys. Chem. Chem. Phys. 21, 20463–20477 (2019)

    Article  CAS  Google Scholar 

  40. Varunkumar, K., Hussain, R., Hegde, G., Ethiraj, A.S.: Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149–156 (2017)

    Article  CAS  Google Scholar 

  41. Bashir, B., Khalid, M.U., Aadil, M., Zulfiqar, S., Warsi, M.F., Agboola, P.O., Shakir, I.: CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications. Ceram. Int. 47, 3603–3613 (2021)

    Article  CAS  Google Scholar 

  42. Wolverson, D.: Raman Spectroscopy, Characterization of Semiconductor Heterostructures and Nanostructures, pp. 249–288. Elsevier (2008)

    Book  Google Scholar 

  43. Das, D., Gutierrez, G., Ramana, C.: Raman spectroscopic characterization of chemical bonding and phase segregation in tin (Sn)-incorporated Ga2O3. ACS Omega 8, 11709–11716 (2023)

    Article  CAS  Google Scholar 

  44. Munawar, T., Yasmeen, S., Hussain, F., Mahmood, K., Hussain, A., Asghar, M., Iqbal, F.: Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Article  CAS  Google Scholar 

  45. Ma, L., Liu, M., Jing, D., Guo, L.: Photocatalytic hydrogen production over CdS: effects of reaction atmosphere studied by in situ Raman spectroscopy. J. Mater. Chem. A 3, 5701–5707 (2015)

    Article  CAS  Google Scholar 

  46. Padalkar, M., Pleshko, N.: Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst 140, 2093–2100 (2015)

    Article  CAS  Google Scholar 

  47. Tofa, T.S., Kunjali, K.L., Paul, S., Dutta, J.: Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 17, 1341–1346 (2019)

    Article  CAS  Google Scholar 

  48. Yang, T.C.-K., Wang, S.-F., Tsai, S.H.-Y., Lin, S.-Y.: Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy. Appl. Catal. B 30, 293–301 (2001)

    Article  CAS  Google Scholar 

  49. Li, Q., Anpo, M., Wang, X.: Application of photoluminescence spectroscopy to elucidate photocatalytic reactions at the molecular level. Res. Chem. Intermed. 46, 4325–4344 (2020)

    Article  CAS  Google Scholar 

  50. Aleksandrzak, M., Kukulka, W., Mijowska, E.: Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 398, 56–62 (2017)

    Article  CAS  Google Scholar 

  51. Tereshchenko, A., Smyntyna, V., Ramanavicius, A.: Model of Interaction Between TiO2 Nanostructures and Bovine Leucosis Proteins in Photoluminescence Based Immunosensor, Advanced Nanomaterials for Detection of CBRN, pp. 217–226. Springer (2020)

    Google Scholar 

  52. Ameta, R., Solanki, M.S., Benjamin, S., Ameta, S.C.: Photocatalysis, Advanced Oxidation Processes for Waste Water Treatment, pp. 135–175. Elsevier (2018)

    Book  Google Scholar 

  53. Liu, W.-S., Liao, M.-W., Huang, S.-H., Reyes, Y.I.A., Chen, H.-Y.T., Perng, T.-P.: Formation and characterization of gray Ta2O5 and its enhanced photocatalytic hydrogen generation activity. Int. J. Hydrog. Energy 45, 16560–16568 (2020)

    Article  CAS  Google Scholar 

  54. Zhao, Q., Puebla, S., Zhang, W., Wang, T., Frisenda, R., Castellanos-Gomez, A.: Thickness identification of thin InSe by optical microscopy methods. Adv. Photonics Res. 1, 2000025 (2020)

    Article  Google Scholar 

  55. Bednarz, M., Malyshev, V., Knoester, J.: Intraband relaxation and temperature dependence of the fluorescence decay time of one-dimensional Frenkel excitons: the Pauli master equation approach. J. Chem. Phys. 117, 6200–6213 (2002)

    Article  CAS  Google Scholar 

  56. Zacharioudaki, D.-E., Fitilis, I., Kotti, M.: Review of fluorescence spectroscopy in environmental quality applications. Molecules 27, 4801 (2022)

    Article  CAS  Google Scholar 

  57. Wang, W., Fang, J., Huang, X.: Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Appl. Surf. Sci. 513, 145830 (2020)

    Article  CAS  Google Scholar 

  58. Luo, Y., Breeding, C.M.: Fluorescence produced by optical defects in diamond: measurement, characterization, and challenges. Gems Gemol. 49 (2013)

    Google Scholar 

  59. Fadley, C.S.: X-ray photoelectron spectroscopy: progress and perspectives. J. Electron. Spectrosc. Relat. Phenom. 178, 2–32 (2010)

    Article  Google Scholar 

  60. Krishna, D.N.G., Philip, J.: Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl. Surf. Sci. Adv. 12, 100332 (2022)

    Article  Google Scholar 

  61. Zhang, L.: X-ray absorption spectroscopy of metalloproteins. Metalloproteins: Methods Protocols 179–195 (2019)

    Google Scholar 

  62. Lin, L., Wang, H., Luo, H., Xu, P.: Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J. Photochem. Photobiol. A 307, 88–98 (2015)

    Article  Google Scholar 

  63. Schneider, J., Curti, M.: Spectroscopic and kinetic characterization of photogenerated charge carriers in photocatalysts. Photochem. Photobiol. Sci. 22, 195–217 (2023)

    Article  CAS  Google Scholar 

  64. Macdonald, I.R., Rhydderch, S., Holt, E., Grant, N., Storey, J.M., Howe, R.F.: EPR studies of electron and hole trapping in titania photocatalysts. Catal. Today 182, 39–45 (2012)

    Article  CAS  Google Scholar 

  65. Chiesa, M., Livraghi, S., Paganini, M.C., Salvadori, E., Giamello, E.: Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy. Chem. Sci. 11, 6623–6641 (2020)

    Article  CAS  Google Scholar 

  66. Shiwa, M., Kishi, T.: NDT-based assessment of damage: an overview. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, pp. 1–8. Elsevier, Oxford (2005)

    Google Scholar 

  67. Yan, J., Wu, G., Guan, N., Li, L., Li, Z., Cao, X.: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978–10988 (2013)

    Article  CAS  Google Scholar 

  68. Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., Pan, C.: Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116, 22619–22624 (2012)

    Article  CAS  Google Scholar 

  69. Gao, Y., Nie, W., Wang, X., Fan, F., Li, C.: Advanced space-and time-resolved techniques for photocatalyst studies. Chem. Commun. 56, 1007–1021 (2020)

    Article  CAS  Google Scholar 

  70. Schwuttke, G.: New X-ray diffraction microscopy technique for the study of imperfections in semiconductor crystals. J. Appl. Phys. 36, 2712–2721 (1965)

    Article  CAS  Google Scholar 

  71. Benstetter, G., Biberger, R., Liu, D.: A review of advanced scanning probe microscope analysis of functional films and semiconductor devices. Thin Solid Films 517, 5100–5105 (2009)

    Article  CAS  Google Scholar 

  72. Ye, H., Lee, J., Jang, J.S., Bard, A.J.: Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. J. Phys. Chem. C 114, 13322–13328 (2010)

    Article  CAS  Google Scholar 

  73. De Cremer, G., Sels, B.F., De Vos, D.E., Hofkens, J., Roeffaers, M.B.: Fluorescence micro (spectro) scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010)

    Article  Google Scholar 

  74. Wang, H., Chu, P.K.: Characterization of Biomaterials: Chapter 4. Characterization of Biomaterials. Elsevier Inc. (2013)

    Book  Google Scholar 

  75. Zhao, H., Pan, F., Li, Y.: A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. J. Materiomics 3, 17–32 (2017)

    Article  Google Scholar 

  76. Böer, K.W., Pohl, U.W.: Crystal Defects, Semiconductor Physics, pp. 595–648. Springer (2023)

    Google Scholar 

  77. Tan, H., Zhao, Z., Zhu, W.-B., Coker, E.N., Li, B., Zheng, M., Yu, W., Fan, H., Sun, Z.: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl. Mater. Interfaces 6, 19184–19190 (2014)

    Article  CAS  Google Scholar 

  78. Diebold, U., Lehman, J., Mahmoud, T., Kuhn, M., Leonardelli, G., Hebenstreit, W., Schmid, M., Varga, P.: Intrinsic defects on a TiO2 (110)(1 × 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf. Sci. 411, 137–153 (1998)

    Article  CAS  Google Scholar 

  79. Mezhenny, S., Maksymovych, P., Thompson, T., Diwald, O., Stahl, D., Walck, S., Yates, J., Jr.: STM studies of defect production on the TiO2 (110)-(1 × 1) and TiO2 (110)-(1 × 2) surfaces induced by UV irradiation. Chem. Phys. Lett. 369, 152–158 (2003)

    Article  CAS  Google Scholar 

  80. Zoski, C.G.: Advances in scanning electrochemical microscopy (SECM). J. Electrochem. Soc. 163, H3088 (2015)

    Article  Google Scholar 

  81. Zhang, L., Ran, J., Qiao, S.-Z., Jaroniec, M.: Characterization of semiconductor photocatalysts. Chem. Soc. Rev. 48, 5184–5206 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DPR wishes to thank CONACyT (Mexico) for the research fellowship to pursue Ph.D. studies. The authors thank the support from CONACyT “Ciencia Basica y/o Ciencia de Frontera. Modalidad: Paradigmas y Controversias de la Ciencia 2022” grant no. 320252, “Proyectos multidisciplinarios de Investigacion Científica y Desarrollo Tecnologico” SIP-IPN 2194 (module 20230957), and “Proyectos de Desarrollo Tecnológico o Innovación” SIP-IPN 20231102. Fabiola S. Sosa-Rodríguez appreciates the support from SECTEI through project No. 2284c23, “Monitoreo de la calidad del agua en los sistemas de captación de agua de lluvia (SCALL) y evaluación del programa de cosecha de agua de lluvia en la Ciudad de México”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vazquez-Arenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palomares-Reyna, D., Gutiérrez-Lopez, A.N., Sosa-Rodríguez, F.S., Vazquez-Arenas, J. (2024). Techniques to Characterize the Photoactivity of Semiconductor Materials Defining Performance in Advanced Oxidation Processes and Fuel Generation. In: Taft, C.A., de Almeida, P.F. (eds) Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-46545-1_3

Download citation

Publish with us

Policies and ethics